
Received: 29 August 2022 Revised: 6 January 2023 Accepted: 10 January 2023 IET Blockchain

DOI: 10.1049/blc2.12023

ORIGINAL RESEARCH

Waterfall: Gozalandia. Distributed protocol with fast finality and

proven safety and liveness

Sergii Grybniak1 Yevhen Leonchyk2 Igor Mazurok2 Oleksandr Nashyvan1

Ruslan Shanin2

1Odessa National Polytechnic University Institute of
Computer Systems, Institute of Computer Systems,
Odesa, Ukraine

2Odessa I.I. Mechnikov National University, Faculty
of Mathematics, Physics and Information
Technologies, Odesa, Ukraine

Correspondence

Sergii Grybniak, Odessa National Polytechnic
University Institute of Computer Systems, Institute
of Computer Systems, Odesa, Ukraine.
Email: sergii.grybniak@ieee.org

Funding information

Fuente Labs LLC funded the research work and
AWS servers to carry out the load tests.

Abstract

A consensus protocol is a crucial mechanism of distributed networks by which nodes can
coordinate their actions and the current state of data. This article describes a BlockDAG
consensus algorithm based on the Proof of Stake approach. The protocol provides net-
work participants with cross-voting for the order of blocks, which, in the case of a fair
vote, guarantees a quick consensus. Under conditions of dishonest behavior, cross-voting
ensures that violations will be quickly detected. In addition, the protocol assumes the exis-
tence of a Coordinating network containing information about the approved ordering,
which qualitatively increases security and also serves to improve network synchronization.

1 INTRODUCTION

Blockchain technology is now firmly entrenched in our lives.
The core of a decentralized platform is a consensus layer that
allows all honest participants (ie properly operating and follow-
ing the network protocol) to arrive at the same decisions and
have the same state of the distributed ledger [1]. PoW (Proof of
Work) based consensus mechanisms were the first to be imple-
mented [2]. Unfortunately, PoW-based consensus mechanisms
have two significant drawbacks: poor scalability and high power
consumption [3]. This shortcoming engendered the search for
new consensus approaches. One solution to the problem of
high energy costs is a consensus mechanism based on Proof
of Stake (PoS) (see, for example, Algorand [4], Cardano project
[5], Ouroboros [6–8], Snow white [9]).

Another solution is to use BFT consensuses (e.g. see [10,
11]), but these consensuses only work well with a small number
of nodes.

Another problem of classical blockchains is that concurrent
transactions/blocks cannot be accepted at the same time, result-
ing in slow addition and confirmation of transactions. This
state of affairs motivates the emergence of protocols based on
directed acyclic graph (DAG) structures (see, e.g. [12–16]). DAG

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. IET Blockchain published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

structures allow us to create multiple blocks at the same time. In
particular, we get the following benefits:

∙ increase the number of transactions accepted per round of
network operation;

∙ split the transaction pool to reduce network load.

An overview of protocols based on DAG structures can be
found in [17]. We also note, for the sake of completeness, that
blockchains are also BlockDAGs. They are typically represented
as a PolyTree (or a directed tree) with a longest chain rule [2] or
its modification as a fork choice rule.

There are typically two types of DAG based protocols: trans-
actional DAGs (txDAGs) and block DAGs (BlockDAG) [17].
In txDAGs, vertices of the DAG are transactions [18], while
in BlockDAGs they are—blocks [13, 19, 20]. Referential struc-
ture specificities pose their own challenges, in particular, the
achievement of network decentralization.

The goal of the present paper is to build a DAG-based PoS
consensus protocol upon the assumption that there will be
tens, or even hundreds of thousands of validator-nodes, while
remaining scalable and processing thousands of transactions per
second. Some examples of other DAG-based PoS consensus

IET Blockchain. 2023;1–12. wileyonlinelibrary.com/iet-blc 1

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-6817-8057
mailto:sergii.grybniak@ieee.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/iet-blc

2 GRYBNIAK ET AL.

TABLE 1 Network load test results

Loading

Number of Idling First day Third day

Servers Nodes Coordinators Total CPU RAM CPU RAM CPU RAM

t3, medium 32 32 1024 1.9 0.6 2.5 1.3 2.2 1.8

32 16 512 2.3 0.7 2.3 1.3 0.56 2.2

8 32 256 1.9 0.6 2.5 1.3

8 16 128 2.3 0.7 2.3 1.3 0.53 2.66

8 8 64 2.3 0.5 2.3 1.3

t3, small 8 8 64 1.9 0.5 2.2 1.3

protocols can be found in [13, 21–23]. Also in [22] it can be
found some typical problems of PoS and DAG.

1.1 Our results

We present “Waterfall: Gozalandia,” a new BlockDAG model
based on PoS. The following new results have been obtained:

∙ a new simple PoS oriented blockDAG ordering algorithm
was proposed;

∙ a model of the divided work of validators (voting for the
ordering of the blockDAG) and the creators of blocks with
transactions was proposed;

∙ a new validator voting model has been proposed: Valida-
tors do not vote for each block, but for “spine blocks”
that determine the ordering. This approach reduces the
amount of information that needs to be distributed to make
a sequencing decision.

∙ under optimistic assumptions about the network operation,
an estimate of the number of slots for ordering stability is
obtained and the speed of decision making in the liveness
property is obtained.

∙ an algorithm for time adjustment of duration of slots is
proposed.

Our protocol is safe under a number of plausible assump-
tions:

1) the network is synchronous in the sense that there is
an upper bound within which any honest participant can
communicate with any other participant;

2) honest validators are available as needed to participate in
each epoch;

3) honest validators do not remain offline for long periods of
time.

We use the scheme for selecting committees, leaders, and
block producers proposed in [24]. This method guarantees
sufficient security and protection against manipulation by
attacking nodes.

In our review of the protocol, we focus on the properties of
liveness and safety [25], which are the two main formal prop-
erties of a reliable block registry. Viability means that every
properly created block available to nodes in the network will,
after some time, be added to the ordering, and all its consis-
tent transactions will be accepted. Security means that if some
honest node has accepted some block ordering, then all other
honest nodes will also adopt the same block ordering.

This consensus protocol allows for further implementation
of smart contract technology by Waterfall. The concept of
smart contracts was introduced for the first time by Nick
Szabo in 1994 [26]. It later became widespread primarily due to
Ethereum. Smart contracts are becoming increasingly popular
for improving business transactions around the world [27–29],
especially in Decentralized Finance (DeFi) [30, 31]. Nowa-
days, the international community continues to actively study
and develop new smart contract technologies, in particular,
Ethereum v2.0 [32].

Finality is a key issue for the implementation of smart con-
tracts. The property of finality [33, 34] ensures that a block that
has been committed and recorded will not be dropped in the
future for all honest nodes. Thus, smart contract results cannot
be reversed.

However, most modern finality consensuses have one signif-
icant limitation: knowledge of the number of nodes taking part
in the consensus is required. One of our main goals is to provide
a consensus protocol with the property of finality that allows a
dynamic number of network nodes (validators). In doing so, the
platform will be able to remain fully decentralized and highly-
scalable, relative to both the number of nodes and transaction
throughput. All of these issues require the development of a
new method for creating a DAG referential structure, and its
further ordering and finalization.

1.2 Implementation

Currently, the main elements of “Waterfall: Gozalandia” have
been implemented. We have carried out the load tests, using
AWS t3.small and t3.medium servers with 2-core CPU and 2
or 4 GB of RAM, respectively. The algorithm has been tested

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRYBNIAK ET AL. 3

with 8, 32 and 64 nodes and with 16 and 32 workers per node.
We tested the network by generating approximately 96,000

transactions with the slot length is 4 seconds and the number
of blocks in the slot is 4. At this state, the fully operational
network handles a throughput of 3200–3600 transactions per
second, where the average waiting time for an confirmation is
about 20 seconds.

Moreover, we also studied relationship between the load on
the CPU or RAM and the number of Workers running on
servers. From the Table 1, one can see that there is no signif-
icant correlation between these indicators. We also noticed that
the load structure changes throughout time. On the third day,
the impact of program adaptation mechanisms became appar-
ent. The workload on the processor was reduced by 75–77% as
a result of putting some of the data needed for work in a pool
in RAM. However, this only happened in situations where there
was enough memory available to store all the data required for
all the Workers operating on the node. As an experiment, we
evaluated hashing of data with insufficient RAM for 32 Work-
ers. Despite the 38% increase in memory usage, the reduction
in CPU resources were only 12%. Thus, we came to the con-
clusion that doubling the minimum amount of RAM allows for
a more than four-fold reduction in CPU load on the third day
of work. At Amazon Web Services prices, these factors result
in an average 64% savings in server maintenance costs for the
Waterfall network node.

2 AUXILIARY DEFINITIONS
AND RESULTS

The “Waterfall: Gozalandia” system consists of two parts: the
Coordinating and BlockDAG networks. Each node of the Coor-
dinating network is connected to a node of the BlockDAG
network and vice versa.

The time of the work of the Coordinating and the BlockDAG
networks are divided into slots and epochs. Slots define the
rounds of work of the networks and epochs combine slots
and serve to summarize the intermediate results of work of
the network.

2.1 Directed acyclic graphs

For our further explanation, we will need some concepts from
the Graph Theory.

A (simple) directed graph G is an ordered pair (V ,E) of
disjoint sets, where V = V (G) is a nonempty set of vertices
and E = E (G) is a set of edges which are ordered pairs (a, b)
of some elements from the set V (G). The first vertex of the
ordered pair is the tail of the edge, and the second is the head;
together, they are the endpoints. We say that an edge is an edge
from its tail to its head (see, e.g. [35, p. 53]).

If there is an edge from a to b, then we will say that a refers
to b. We will write (a, b), a → b or b ← a for the case if there is
an edge from a to b.

Let G be a directed graph. A graph Y is a subgraph of G if
the inclusions V (Y) ⊆ V (G) and E (Y) ⊆ E (G) hold. Let the
vertices of subgraph P can be renumbered such that

V (P) = {a0, a1, … , ak}, k ⩾ 1,

E (P) =
{

(ak, ak−1), … , (a1, a0)
}
,

where all ai are different for i = 1, … , k − 1. If a0 = ak and k ⩾

2, then the subgraph P is called a cycle. If all ai are different,
then the subgraph P is called a path joining vertices a0 and ak.
In this case, we will also say that P is the path from ak to a0 and
that a0 is the beginning of the path P and ak is the end of the
path P . For the path P we will also use the following notation

P = Pak,a0
= a0 ← a1 ← … ← ak−1 ← ak.

The number of edges of a path P is called length of the path P

and denote l (P).
If the graph G does not have any cycles, then G is acyclic. In

what follows, for directed acyclic graph G , we will say that G is
a DAG to be short.

Let G be a directed acyclic graph and  be a family of paths
P . A graph P∗ is intersection of paths of the family  ,

P∗ =
⋂
P∈

P ,

if the set of vertices of P∗ is intersection of the sets of vertices
and the set of edges is intersection of the sets of edges of paths
of family  , respectively,

V (P∗) =
⋂
P∈

V (P), E (P∗) =
⋂
P∈

E (P).

As vertices of the DAG we will consider the blocks created in
the BlockDAG network. The edges will be defined by block ref-
erences to previous blocks. In this paper we will consider DAGs
for which there is a block bG such that for every block b of the
graph G there is a path Pb,bG

⊂ E (G) connecting blocks b and
bG . Such the block bG will be called genesis, its creation starts the
work of the network.

For the set X denote by |X | the number of elements in
the set X . For b ∈ V (G) we denote by deg+(b) the number
of edges with tail b, deg+(b) = ||{(b, a) ∶ (b, a) ∈ E (G)}||, and
denote by deg−(b) the number of edges with head b, deg−(b) =||{(a, b) ∶ (a, b) ∈ E (G)}||. If deg−(b) = 0, then we say that b ∈

tips(G).
Since the operating time of BlockDAG network is divided

into periods called slots, to the usual structure of directed acyclic
graph we add information about time of a block creation, num-
ber of the slot in which the block was created. For a block b

created in the n-th slot we will write b ∈ Slot(n). By definition,
we assume bG ∈ Slot(0). This is the only block of the zero slot.
Obviously, in a well-synchronized network, block b is created in
the n-th slot if and only if maxPb,bG

⊂E (G) l (Pb,bG
) = n holds.

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 GRYBNIAK ET AL.

FIGURE 1 The ordering of the blocks in the slots with labels of| past(⋅, ⋅)| in the DAG of the BlockDAG network. The spine blocks are shown
in blue

We will say that a block a belongs to the past of a block b,
a ∈ past(b,G), if there is a path Pb,a ⊆ E (G) connecting blocks
b and a.

Let us construct the order in n-slot of a directed acyclic graph
with slots. Let b1, b2 ∈ Slot(n). We will say that the block b1
precedes the block b2, b1 ≺sl b2, if

1) | past(b1,G)| > | past(b2,G)|.
2) If | past(b1,G)| = | past(b2,G)|, then deg+(b1) > deg+(b2).
3) If | past(b1,G)| = | past(b2,G)| and deg+(b1) = deg+(b2),

then hash(b1) < hash(b2) (see Figure 1).

A block b ∈ Slot(n) will be called a spine block if it precedes all
other blocks in the slot.

3 PROTOCOL DESCRIPTION

Let us start with a description of how the Coordinating
network works.

3.1 Description of the Coordinating network

One of the main components of “Waterfall: Gozalandia” is
a Coordinating network. This is a blockchain network that
performs the following functions:

1) Maintaining a register of validators — nodes in the net-
work that have blocked a certain amount of coins to
participate in the network. In “Waterfall: Gozalandia,”
the blocked amount is fixed and the same for all val-
idators. The set of all validators will be denoted by
 ;

2) allocation of validators to committees and slots;
3) assign roles to validators: committee member, committee

leader, block creator;
4) getting information about spine blocks from the BlockDAG

network;
5) voting for spine blocks and creating a block in your network

with the results of the vote.

We assume that all members of the Coordinating network
can authenticate messages from each other. We also assume that
all messages are eventually delivered to all honest members and
that they can synchronize in a time not exceeding Tsync . In doing
so, network nodes that have not received a message in time are
considered faulty.

The work of the Coordinating network begins with the
creation of a genesis block, which contains the initial list
of validators.

The Coordinating network works according to the following
scheme:

1) At the beginning of each epoch, a list of NC committees for
the next epoch is randomly generated for each slot.

2) At the beginning of each slot, the leaders of those commit-
tees are chosen at random from among the members of the
committees.

3) At the beginning of each slot, nodes are randomly chosen
from the committee members to create blocks.

4) At the beginning of each slot, each node of the Coordinat-
ing network sends to the connected nodes of the BlockDAG
network information about the epoch, the slot, the list of
block creators and information about the finalized blocks of
the BlockDAG network (see below for definition of finalized
blocks).

5) At the beginning of each slot, each node of the Coordinating
network receives information about spine blocks from the
BlockDAG network node connected to it.

The finalized spine block of the n-th slot will be denoted by
the symbol fn. By definition, we set f0 = bG , where bG is the
genesis block.

Let us describe the procedure for creating a block in the
Coordinating network, assuming that the finalized spine block
fn is already selected. Denote by Σn+s−1 the list of blocks up to
n + s − 1-th slot of the Coordinating network and denote by i

the list of blocks n + i-th slot of the BlockDAG network.

1) Each committee member sends messages to the other com-
mittee members with a list of visible spine blocks starting
at n + 1 slots, a block of the previous state, and a signa-
ture, mv,1 =

(
(b1, b2, … , bs), 𝜎, v

)
, where bi ∈ i , v ∈  is

the signature and 𝜎 ∈ Σn+s−1 is chosen according to the
following rule
a) if there are no forks, then it is the last correctly created

block of the Coordinating network;
b) if there are forks and the longest chain, it is the last block

of the longest chain;

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRYBNIAK ET AL. 5

c) if there are forks and chains generated by them of the
same length, then the earliest of the last blocks of forks
chains.

2) Let a sequence b = (b1, b2, … , bks
) be the beginning of some

sequence (b1, b2, … , bs) published some validator v. Then we
say that the sequence b receive a vote of the validator v. As a
result of the previous point, two options are possible:
a) There is a sequence b = (b1, b2, … , bks

) which received
more than 2∕3 votes, such that no longer sequence
received more than 2∕3 votes.

b) No sequence received more than 2∕3 of votes. In this
case, we set b = ∅.

3) Each committee member who supports b sends the message
mv,2 =

(
b, 𝜎, v

)
to the other committee members.

4) The leader of the committee forms a message

ml =
(
b, 𝜎, (v1, … , vi)

)
,

and sends it to the other leaders of the committees.
5) If more than 2∕3 of the committees receive a nonempty

sequence, each leader sends the message (m, vl) to the other
leaders, where m = (ml1

, … ,mlNC
) and the first leader forms

and sends out the block (m, v, vl1
), where v = (vl1

, … , vlNC
).

Otherwise the block is not published.

Let us move on to the rules for accepting a block in the
Coordinating network

1) If a correctly created block of the Coordinating network is
obtained no later than the next slot, then it is sent further
and added to the chain. In this case we will say that the block
is obtained in time.

2) If a correctly created block of the Coordinating network is
obtained through one slot, then it is sent further and added
to the waiting list. In this case we will say, that the block is
obtained with a delay.

3) If a block, which belongs to the waiting list, is referenced by
a block created in time or with a delay, then it is added to the
chain.

4) If a block of the Coordinating network is obtained later than
2 slots after it was created, it is deleted and not sent further.

Definition 3.1. A sequence (b1, … , bk) is called accepted in
block b if in more than 2∕3 of the committee solutions of
that block it is the initial sequence and no longer sequence has
this property.

Definition 3.2. Let P1 = b0 ← b1,1 ← b1,2 ← … ← b1,s1 , P2 =

b0 ← b2,1 ← b2,2 ← … ← b2,s2 be paths and let Pi (j) be a sub-
path of the path Pi containing only blocks created before j +

1-th slot. We will say that the path P1 less than the path P2 and
write P1 ≾ P2, if the following statements

∃k ∈ ℕ ∀ j < k ||l (P1(j)) − l (P2(j))|| ⩽ 2,

and l (P2(k)) = l (P1(k)) + 3 are valid. If for paths P1 and P2 we
have P1 ̸≾ P2 and P2 ̸≾ P1, then we will write P1 ∥ P2 and say
that P1 and P2 are not comparable.

Definition 3.3. Let G be a DAG of the Coordinating network.
The path P = b1 ← … ← bk is called to be continuous in G if,
for every i ∈ {slot(b1), … , slot(bk)}, we have that ai ∈ G implies
ai ∈ P , where ai is a block created in i-th slot. In other words,
the path P is continuous if all blocks, created between b1 and bk,
belong to the path P .

Definition 3.4. Let G be a DAG of the Coordinating network.
Denote by  the set of all paths P such that there is no path
P′ for which P ≾ P′ and let P∗ be intersection of paths P of
the family  . Then the path P∗

r−2 is called accepted, where P∗
r−2 is

the path P∗ without the last two blocks. If block b belongs to an
accepted path P , then b is called to be accepted.

Definition 3.5. Let i be the list of blocks n + i-th slot of the
BlockDAG network, Σn+i be the list of blocks up to n + i-th slot
of the Coordinating network. A sequence of blocks (b1, … , bk),
where bi ∈ i , i is the list of blocks n + i-th slot, is called final-
ized if this sequence is accepted in NA accepted blocks, where
NA is a network parameter.

3.2 BlockDAG network description

Let’s move on to describing how the BlockDAG network works.
At the beginning of the BlockDAG network, a genesis block

is created, containing service information about the network.
The blocks in the BlockDAG network “Waterfall: Gozalan-

dia” contain hashes of blocks that do not belong to the same
slot in which the block is created and that are not referenced
in the visibility area of the node during block creation (no
blocks containing hash of those blocks) and an ordered list
of transactions.

Let us describe the procedure of adding a new block by a
BlockDAG node of the network. When a new block is received,
the BlockDAG node of the network checks if the block was
created correctly:

1) the correctness of the creation slot and node (could the node
create a block in this slot);

2) the content of the block is correct;
3) if the references to previous blocks are correct

a) no references to multiple blocks that are created by the
same node in the same slot;

b) no references to incorrectly created blocks.

Let us describe the block ordering procedure in the
BlockDAG network.

Let the sequence f0, …, fn of finalized spine blocks be given
in the graph G . Define the expanding sequence of subgraphs Gn

of graph G associated with this sequence. Assume by definition

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 GRYBNIAK ET AL.

that G0 is a graph with V (G0) = {bG } and E (G0) = ∅. Let us
define the graph Gn as follows

V (Gn) = V (Gn−1) ∪ past(fn) ∪ { fn},

and, for every a1, a2 ∈ V (Gn), (a1, a2) ∈ E (Gn) if and only if
(a1, a2) ∈ E (G).

Let us construct a linear order on Gn (see Figure 2):

1) For every a ∈ V (Gn−1) and b ∈ V (Gn) ⧵V (Gn−1) we set
a ≺ b.

2) For every a ∈ V (Gn) ⧵ { fn} we set a ≺ fn.
3) For every a, b ∈ (V (Gn) ⧵V (Gn−1)), if a, b ∈ Slot(i), then

we set a ≺ b if a ≺sl b. If a ∈ Slot(i), b ∈ Slot(j), i ≠ j , then
we set a ≺ b if i < j .

4 PROPERTIES OF THE PROTOCOL

4.1 On the probability of creating blocks

We will analyze the protocol under the assumption that the time
of spreading information over the network Tsync among honest
nodes does not exceed the slot time Tsl , Tsync < Tsl .

Evaluate the probability of a committee with an unfair
majority. Let there be n nodes in the network and among
them nc dishonest nodes and let the size of the commit-
tee be k nodes. Denote by km the smallest natural number
such that km > (2∕3)k. Then the probability P (kcor ⩾ km) that
more than 2∕3 of the committee members are dishonest
is

P (kcor ⩾ km) =
k∑

i=km

(nc

i

)(n−nc

k−i

)
(n

k

) .

Similarly, the probability P (khon ⩾ km) that more than 2∕3 of
the committee members will be honest is

P (khon ⩾ km) =
k∑

i=km

(nc

k−i

)(n−nc

i

)
(n

k

) .

To see the order of these values, consider a particular case.

Example 4.1. Let us set n= 10,000, nc = 3333, k = 100, NC =

4. Then km = 67,

P (kcor ⩾ 67) =
100∑

i=67

(3333
i

)(6667
100−i

)
(10000

100

) ≈ 5 ⋅ 10−12,

P (khon ⩾ 67) =
100∑

i=67

(3333
100−i

)(6667
i

)
(10000

100

) ≈ 0.52.

FIGURE 2 The structure of the Coordinating and BlockDAG networks.
The finalized spine blocks are shown in blue. The final ordering is as follows:
aG , f1, a11, a12, a13, f2, a21, a22, f3, a23, a31, a32, f4, a41, a42, a43, a44, f5

Assuming that the probabilities of choosing honest committees
are p ≈ 0.52 (they are not, but they are approximately equal), the
probability that at least 3 out of 4 committees will be honest is

P (Nchon ⩾ 3) =
(4

3

)
p3(1 − p) +

(4
4

)
p4 ≈ 0.34.

These results show that in about a third of cases, a correct
block will be published in the Coordination network, with a
very low probability (about 10−33) several blocks will be pub-
lished (multicreating), and in about 2∕3 of cases a block may
not be published. Note also that as the number of honest nodes
grows, the probability of publishing a correct block quickly
approaches 1.

Due to the fact that some of Coordinators may turn out to
be faulty, we need to find out how this will affect the deci-
sion in the committees and the final decision on finalization.
In this case, it is necessary to estimate what is the maximum
proportion of faulty Coordinators that is acceptable without
stopping the decision-making process. In other words, for a
given number of Coordinators, find such a number of commit-
tees and determine their number, at which the average number
of faulty slots per epoch will be in a certain sense “minimal”.
Obviously, the number of faulty slots will depend on the pro-
portion of faulty Coordinators and their distribution within
the committees. At the same time, the number of sent mes-
sages should also be taken into account, possibly minimizing
it.

Using simulation modeling, it was found that the largest per-
centage of faulty Coordinators, at which there is no significant
delay in block finalization, is 20%. The best form for the num-
ber of committee members and committees is 3 ⋅ k + 1 (k is
integer) to reduce the number of missed slots in comparison
with nearby options. In addition, during the simulation, it is
found that the best result with a fixed number of Coordinators
(lower average number of faulty slots per epoch) is achieved
with a decrease in the number of committees and with a cor-
responding increase in the number of their members. Figure 3
depicts the number of faulty slots per epoch depending on the

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRYBNIAK ET AL. 7

FIGURE 3 Dependency of the number of missed slots on the number of
committees and committee members

number of committees and committee members. However, due
to technical restrictions on the exchange of messages within
the committee, the number of committee members should not
exceed approximately 100.

Remark 4.2. By Example 4.1, we will assume that for every path
consisting of two blocks there is a block from this path which
is created by honest committees and is obtained by some hon-
est nodes in time. In particular, if the second block is created
by honest committees, then each of the blocks are created by
honest committees.

Consensus protocols are used by nodes in a distributed
network to make a consensus decision from possible non-
consensus decisions. Each consensus protocol must have the
following two properties:

∙ Liveness: if a block has become available to nodes in the net-
work, after some time it will be added to the ordering and all
consistent transactions will be accepted;

∙ Safety: the accepted decision is the same for all honest nodes.

Property 4.3. If a block is created by honest committees, then
some honest nodes obtain the block in time and all honest
nodes obtain the block either in time or with a delay.

Remark 4.4. If Property 4.3 is valid and, for a block b created in
i-th slot, there is a block referred to b, then, by Remark 4.2, all
honest node see the block b in i + 3-th slot.

For the following we assume that Property 4.3 is valid.

Theorem 4.5. Let G be a directed acyclic graph of the Coordinating

network in some node Nd1 and let P, P∗ be paths with the same beginning

such that P ≾ P∗. Then the path P will be dropped.

Proof. Let P = b0 ← b1,1 ← … ← b1,s and P∗ = b0 ← b2,1 ←

… ← b2,r be paths and let P ≾ P∗ hold. It implies that the
following statements

∃k ∀ j < k ||l (P (j)) − l (P∗(j))|| ⩽ 2, (4.1)

and

l (P∗(k)) = l (P (k)) + 3, (4.2)

are valid. Denote

Ps1
= P (k) = b0 ← b1,1 ← … ← b1,s1 ,

P∗
r1
= P∗(k) = b0 ← b2,1 ← … ← b2,r1

.

It is easy to see that statements (4.1) and (4.2) are valid only in
the following two cases (see Figure 4)

1) The path b2,r1−2 ← b2,r1−1 ← b2,r1
is continuous.

2) There is a block created between b2,r1−2 and b2,r1−1 and the
path b2,r1−1 ← b2,r1

is continuous.

Let b j1
and b j2

be blocks created after block b2,r1
. Then in

the time of creating the block b j2
all honest nodes see the block

b2,r1−1. Consequently, the block b2,r1−2 are added in the chain in
all honest nodes. Thus, since in the first case we have l (P∗

r1−2) =
l (Ps1

) + 1 and the block b2,r1−2 was created before the block b j1
,

all blocks, created after k + 1-th slot, do not refer to the path P .
For the second case, we have

l (P∗
r1−2) = l (Ps1

) + 2.

Consequently, all blocks created after k + 1-th slot do not refer
to the path P . Thus, we have that in both cases the path P is
dropped. □

From the proof of Theorem 4.5 it follows the following
corollaries.

Corollary 4.6. Let G be a directed acyclic graph of the Coordinating

network in some node Nd1 and let P, P∗ be paths with the same beginning

such that P ≾ P∗. Then there is at most one block of P created after the

last block of the path P∗.

Corollary 4.7. Let G be a directed acyclic graph of the Coordinating

network in some node Nd1 and let b0 be an accepted block. If there is the

path P∗ = b0 ← b1 ← … ← br such that, for every path P of G with

the same beginning, we have either P = P∗ or P ≾ P∗, then all paths P

with the same beginning different of P∗ will be dropped and the path P∗
r−2

will be continued.

Proof. It follows from the proof of Theorem 4.5. □

The following theorem shows that the protocol, we are
considering, has the property of Safety.

Theorem 4.8 (Safety). If block f was finalized by some honest node, it

will be finalized by every active honest node.

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 GRYBNIAK ET AL.

FIGURE 4 The path P will be dropped and the path
P∗

r1−2 will be continued

FIGURE 5 The path P less than P∗

Proof. It follows from the Corollary 4.7 that the sets of accepted
blocks in any two honest nodes coincide. Thus, the sets of
finalized blocks also coincide. □

In the following theorem we give a simple sufficient
condition that the path is maximal.

Theorem 4.9. Let a path P0 be continuous, l (P0) ⩾ 4 and let a path

P∗ with beginning in b0 such that P0 ⊆ P∗ hold. Then, for every path P

with beginning in b0 satisfying P0 ⊄ P, we have P ≾ P∗.

Proof. Let P0 = bk1
← bk2

← … ← bk5
hold, where slot(bki

) =
ki . Consider the paths P∗

1 = P∗(k5) and P1 = P (k5). Since the
path P0 is continuous, the last block of the path P1 have a slot
less than k1. Hence, it follows that l (P∗(k1)) − l (P) ⩾ −1 holds
(see Figure 5).

Indeed, if we have l (P∗(k1)) − l (P) ⩽ −2, then the inequal-
ity P∗(k1 − 1) ≾ P holds, and, by Corollary 4.6, P∗(k1 − 1) has
at most one block after the last block of P , that contradicts to
suggestion of the theorem.

Consequently, the blocks, which have the slot more than k5 +

1, refer to blocks which have the slots more than k2 and have in
the past the block bk2

because l (P∗(k3)) − l (P) = 1 and there is

at most one block referred to the path P , which is created after
the slot k3. □

Let us now turn to the consideration of the property of Live-
ness. It can be shown that Property 4.3 is not enough, in general,
for validity of Liveness.

Property 4.10. If a block is created by honest committees, then
all honest nodes obtain the block in time.

Remark 4.11. If Property 4.10 is valid and, for a block b created
in i-th slot, there is a block referred to b, then, by Remark 4.2,
all honest node see the block b in i + 2-th slot.

For the proof of the following theorem we assume that
Property 4.10 is valid.

Theorem 4.12 (Liveness). If a block has become available to nodes on

the network, it will be added to the ordering after some time.

Proof. For the proof of the theorem we must prove that every
block of the Coordinating network will be either accepted or
dropped after some time.

Let b0 be the last accepted block and slot(b0) < k0. Let us
show that if from k0 + 1-th slot it starts to be valid Prop-
erty 4.10, then there is a path with beginning in b0 which will
be accepted.

First of all, we show that for every k ⩾ k0 there is
the unique block b∗

k
with slot(b∗

k
) > k referred to a block

created before k + 1-th slot such that every path P not
containing b∗

k
has less than four blocks created after k

-th slot.
Suppose contrary that there are two paths

P1 = P1(k) ← a1,1 ← a1,2 ← a1,3,

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRYBNIAK ET AL. 9

P2 = P2(k) ← a2,1 ← a2,2 ← a2,3,

where a1,1 ≠ a2,1, which have not less than three blocks. By
Remark 4.2, both of the paths have not less than two blocks
created by honest committees. Without loss of generality, we
may assume that slot(a1,1) < slot(a2,1). Since the blocks a1,1,
a1,2, a2,1, a2,2 are created by honest committees and, by Prop-
erty 4.10, are obtained in time, the block a2,2 does not refer to
the block a2,1, that contradicts supposition.

Let us show now that the blocks b∗
k

will be accepted. For
every k ⩾ k0, there is a path Pk containing the block b∗

k
such

that Pk has more than 5 blocks created after k-th slot. From
proved above the part of theorem it follows that every path P ,
not containing the block b∗

k
, has no more than 3 blocks created

after k-th slot and, consequently, P ≾ Pk. Thus, if  is the fam-
ily containing all paths P such that there is no path P′ for which
P ≾ P′ and P∗ is intersection paths of the family  , then P∗

contains the block b∗
k
. □

5 TIME ADJUSTMENT

The value of block finalization time is significantly affected
by the duration of slots T 1

sl
and T 2

sl
in the Coordinating and

BlockDAG networks, respectively. However, the parameters
and characteristics of the communication channels in the public
network may vary over time, which will lead to changes in the
propagation time of both the blocks themselves and the service
messages. Obviously, if slot times are specified with a margin
(overestimate), this will lead to an overestimate of the finaliza-
tion time. On the other hand, if the slot time is insufficient to
propagate blocks and reach consensus, then all nodes that do
not manage to get information in the allotted time will have to
be counted as foul. Thus, the number of these nodes along with
the actual foul nodes may exceed the expected limit of one-third
of the nodes. To eliminate this threat, the current protocol uses
an adaptive time control mechanism.

Changing of slot duration is done at the beginning of the
next epoch for BlockChain and BlockDAG networks separately
on the basis of results demonstrated in the previous epoch and
fixed in the first block of each epoch. The results of the last
two blocks of the previous epoch are not taken into account.
Note that if it is necessary to react more quickly to changes in
network connection parameters, time adjustment can be done
twice—both at the beginning and in the middle of an epoch.
The general concept is that slot duration smoothly decreases
during observed successes in protocol operation and increases
during a series of failures.

5.1 Coordinating network case

The measure of success in a given epoch is the number of mul-
tisignature signed lists of visible spine blocks b. Let us define m

as the fraction of such lists from the maximal possible number

in the period under consideration, and set two reference points
0 < s < S < 1. Then

∙ if m < s, then the value T 1
sl

increases by 10%;
∙ if m > S , then the value T 1

sl
decreases by 10%. However, T 1

sl
is bounded below by Tsync ;

∙ then s ⩽ m ⩽ S we assume that the system is working
normally and that there is no need for time adjustment.

5.2 BlockDAG case

In this case the success of node communication can be judged
by the depth of links of new blocks. If quite a few blocks of a
given slot refer to blocks that were created in slots deeper than
the block before, it means that the communication of the nodes
is delayed. In other words, nodes do not have time to exchange
new blocks within the same slot.

Each honest block producer in the BlockDAG network
accompanies his block with links to all known tips-blocks. Since
each block contains information about the slot number in which
it was created, we have the ability to calculate how long it
traveled from a given honest node to another honest node.
However, dishonest nodes can produce blocks with any refer-
ence, not just tips-blocks. So, to rely on the full structure of
DAG as a reliable reflection of the speed of information dis-
semination is impossible. It is necessary to isolate only that
part of the structure which is potentially formed by honest
links. In this case, the ability of foul nodes to underestimate
the speed is much greater than the possibility of overestimation.
To understate, they only need to refer to long-known blocks
while ignoring new ones. To overestimate, they need to produce
new blocks by colluding. However, such an overestimation actu-
ally reflects the real rate of information propagation in a group
of colluding foul nodes, possibly located on the same or close
technical devices.

Each node observes its own topology. This means that apply-
ing the time settings of the BlockDAG network slots within
the same network is not possible. This means that the time set-
tings of the BlockDAG network slots must be fixed within the
same network. Consider the characteristics of the topology (Ot)
of the network based on the current situation observed by a
particular node Nd based on the links of the block b he created.

5.2.1 Observable topology

Let b ∈ V (G) be the BlockDAG network. Denote by

child(b) = {a ∈ V (G) ∶ (b, a) ∈ E (G)}

is the set of blocks to which block b refers and slot(b) is the
number of the slot in which block b is created.

Each node calculates the characteristic of the observed topol-
ogy when forming its block by all observed blocks to which it

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 GRYBNIAK ET AL.

refers:

Ot (b) =

∑
a∈child(b)

(∑
u∈child(a)

(slot(a) − slot(u))

)
∑

a∈child(b)

slot(a)
.

Thus, each block created by an honest node reliably shows from
which nodes it had time to receive information and the degree
of its relevance. A valid block created by a foul node shows
only part of its information links and the possibility of any
large underestimation of the real speed indicators. We will use
this information to determine reliable information flows and
perform fine-tuning of slot durations.

5.2.2 BlockDAG network synchronization
speed

Each node can count the current observed synchronization rate
of the network. For this purpose, a set of honest observations
is constructed in which the highest O

sup
t and the lowest Oinf

t

observed rates are discarded:

Ohon
t = Ot ⧵

(
Oinf

t ∪ O
sup
t

)
,

where Ot = {Ot (b) ∶ b ∈ G },

Oinf
t =

⋃
b∈G∶|A∗ (b)|<|Ot |∕3

A∗(b),

O
sup
t =

⋃
b∈G∶|A∗ (b)|>2|Ot |∕3

A∗(b),

and

A∗(b) =
{

a ∈ G ∶ Ot (a) < Ot (b)
}
,

A∗(b) =
{

a ∈ G ∶ Ot (a) > Ot (b)
}
.

Recall that there are b∗ and b∗ ∈ G such that Oinf
t = A∗(b∗) and

O
sup
t = A∗(b∗). Indeed, for all pairwise different blocks b1, b2,

without loss of generality, we can assume that Ot (b1) ⩽ Ot (b2)
holds. Then

A∗(b1) =
{

a ∈ G ∶ Ot (a) < Ot (b1)
}

⊆
{

a ∈ G ∶ Ot (a) < Ot (b2)
}
= A∗(b2)

and

A∗(b2) =
{

a ∈ G ∶ Ot (a) > Ot (b2)
}

⊆
{

a ∈ G ∶ Ot (a) > Ot (b1)
}
= A∗(b1).

The values of the set of valid observations are averaged to
obtain an integrated characteristic of the BlockDAG network
synchronization rate:

T DAG
S

=
3Tsl|Ot | ∑

t∈Ohon
t

t .

Thus the computational complexity of such operation is
O(|Ot | ln |Ot |).

This characteristic can be used to determine the properties of
node accessibility (the rate at which it receives information and
information from it) and to estimate its foulness.

To determine the characteristics of the block rate to and from
a given node, two characteristics must be taken into account:

∙ Visibility(Nd) — how many slots after block creation the
blocks referring to it appear;

∙ Sight(Nd) — how many slots in the past from the block are
the blocks to which it refers.

Sight node characteristic can be calculated at any time after
receiving a block b from this node Nd by the following formula:

Sight(Nd) =
1

deg+(b)

∑
a∈child(b)

(
slot(b) − slot(a)

)
.

The characteristic Visibility is calculated similarly, but can-
not be calculated immediately because you have to wait for the
blocks that will use this one as a tips-block for reference.

We denote by create(Nd) the set of all blocks created by node
Nd. With long observation, we can construct a dynamic edge-
weighted graph Gt (N , S ,C) of the information flow topology
of the BlockDAG network, where N is the set of BlockDAG
network nodes,

S = {(Nd1,Nd2) ∈ N × N ∶ ∃(a, b) ∈ E (G)

a ∈ create(Nd1), b ∈ create(Nd2)}

is a set of arcs, which indicate which nodes refer to blocks of
which other nodes, C is the set of weights, which specify visi-
bility areas, Sight(Nd) is estimation of information propagation
speed between pairs of nodes.

The proposed model allows us to build speed estimates based
on algorithms for solving maximal flow problems. This will not
only optimize the slot time in the network to achieve the speed,
but also highlight the bottlenecks in the propagation of blocks.
In the further development of the system, the economic stimu-
lation of nodes to create additional communication channels in
specific places of the information network linking DAG-nodes
is assumed.

6 CONCLUSION

This article defines main the aspects of “Waterfall: Gozalan-
dia” in the Coordinating and BlockDAG networks. We have

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRYBNIAK ET AL. 11

designed the distributed fast finality algorithm and have proven
its liveness and safety. The use of DAG structures makes it
possible for the protocol to achieve high scalability and net-
work performance when conducting transactions and executing
smart contracts. The protocol can be applied in both public
and private networks. However, its advantages are more man-
ifested in the public case, where nodes are large in number
and can be online/offline without any confirmation, at the
discretion of users or technical circumstances, while private
networks are characterized by a more predictable behavior of
nodes.

Further, the consensus protocol can be empowered by
economic leverages to provide the system with sustainable
development (e.g. see [36]). Positive actions of validators should
be incentivized by tokenomics, and their malicious behavior
should not be beneficial, but should be punished with penalties.
The incentivizing system can facilitate appropriate protection
from various kinds of attacks like Nothing-at-stake, Sybil etc.,
as well as some possible threats related to a DAG referen-
tial structure. Thus, a favorable ecosystem will be created for
the provision of a wide spectrum of services in a public
decentralized environment.

In the future works we will analyze possible attacks and
responses to them. In addition, future research will be devoted
to increasing the number of BlockDAG shards managed by the
Coordinating network. Each shard will be optimized according
to the operating conditions within a given metric.

AUTHOR CONTRIBUTIONS

Sergii Grybniak: Conceptualization, project administration,
writing - review and editing. Yevhen Leonchyk: Formal analy-
sis, writing - review and editing. Igor Mazurok: Formal analysis,
writing - review and editing. Oleksandr Nashyvan: Conceptual-
ization, software, writing - review and editing. Ruslan Shanin:
Conceptualization, formal analysis, writing - original draft,
writing - review and editing.

CONFLICT OF INTEREST

All authors declare that they have no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data available on request from the authors

ORCID

Sergii Grybniak https://orcid.org/0000-0001-6817-8057

REFERENCES

1. Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn,
S., Danezis, G.: SoK: Consensus in the age of blockchains. In: Proceedings
of the 1st ACM Conference on Advances in Financial Technologies, pp.
183–198. ACM, New York (2019)

2. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
3. Bach, L.M., Mihaljevic, B., Zagar, M.: Comparative analysis of blockchain

consensus algorithms. In: 2018 41st International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics
(MIPRO), pp. 1545–1550. IEEE, Piscataway (2018)

4. Jing, C., Silvio, M.: Algorand. arXiv:1607.01341v9, pp. 1–75 (2017).
https://arxiv.org/pdf/1607.01341v9.pdf

5. Cardano Team: Documentation for the Cardano ecosystem (2015).
https://docs.cardano.org/

6. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros
Genesis: Composable Proof-of-Stake Blockchains with Dynamic Avail-
ability. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’18, pp. 913–930. Association
for Computing Machinery, New York (2018)

7. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In:
EUROCRYPT 2018. Lecture Notes in Computer Science, Part II, vol.
10821, pp. 66–98. Springer, Heidelberg (2018)

8. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably
secure proof-of-stake blockchain protocol. In: CRYPTO 2017. Lecture
Notes in Computer Science, vol. 10401, pp. 357–388. Springer, Heidelberg
(2017)

9. Daian, P., Pass, R., Shi, E.: Snow White: Robustly Reconfigurable Con-
sensus and Applications to Provably Secure Proof of Stake. In: Goldberg,
I., Moore, T. (eds.) Financial Cryptography and Data Security, pp. 23–41.
Springer International Publishing, Cham (2019)

10. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: Pro-
ceedings of the Third Symposium on Operating Systems Design and
Implementation, pp. 173–186. USENIX Association, Berkeley, CA (1999)

11. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

12. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scal-
ing byzantine agreements forcryptocurrencies. In: Proceedings of the 26th
Symposium on Operating Systems Principles, pp. 51–68. ACM, New York
(2017)

13. Nguyen, Q., Cronje, A., Kong, M., Lysenko, E., Guzev, A.: Lachesis: Scal-
able Asynchronous BFT on DAG Streams. arXiv:2108.01900v1, pp. 1–45
(2021). https://arxiv.org/pdf/2108.01900v1.pdf

14. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: Serialization of
proof-of-work events—Confirming transactions via recursive elections
(2017)

15. Sompolinsky, Y., Wyborski, S., Zohar, A.: PHANTOM GHOSTDAG: A
scalable generalization of Nakamoto consensus. In: Proceedings of the
3rd ACM Conference on Advances in Financial Technologies, pp. 57–70.
Association for Computing Machinery, New York (2021)

16. Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing.
fast money grows on trees, not chains. IACR Cryptology ePrint Archive
2013, 881 (2013)

17. Wang, Q., Yu, J., Chen, S., Xiang, Y.: SoK: Diving into DAG-based
blockchain systems. arXiv:2012.06128, pp. 1–36 (2020). https://arxiv.org/
pdf/2012.06128.pdf

18. Popov, S.: The tangle (2015). https://assets.ctfassets.net/r1dr6vzfxhev/
2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/
iota1_4_3.pdf

19. Baird, L., Harmon, M., Madsen, P.: Hedera: A public hashgraph network
& governing council (2020). https://hedera.com/hh_whitepaper_v2.1-
20200815.pdf

20. Choi, S.M., Park, J., Nguyen, Q., Cronje, A.: Fantom: A scalable frame-
work for asynchronous distributed systems. arXiv:1810.10360v1, pp. 1–36
(2018). https://arxiv.org/pdf/1810.10360v1.pdf.

21. Nguyen, Q., Cronje, A., Kong, M., Kampa, A., Samman, G.: StakeDag:
Stake-based consensus for scalable trustless systems. arXiv:1907.03655v1
(2019). https://arxiv.org/pdf/1907.03655v1.pdf

22. Tian, H., Lin, H., Zhang, F.: Design a proof of stake based directed acyclic
graph chain. In: Frontiers in Cyber Security, FCS 2020. Communications
in Computer and Information Science, vol. 1286, pp. 150–165. Springer,
Singapore (2020)

23. Zhou, T., Li, X., Zhao, H.: DLattice: A permission-less blockchain based
on DPoS-BA-DAG consensus for data tokenization. IEEE Access 7,
39273–39287 (2019)

24. Hoang, V.T., Morris, B., Rogaway, P.: An Enciphering Scheme Based on
a Card Shuffle. In: Advances in Cryptology – CRYPTO 2012, pp. 1–13.
Springer, Berlin Heidelberg (2012)

25. Lamport, L.: Proving the correctness of multiprocess programs. IEEE
Trans. Software Eng. SE-3(2), 125–143 (1977)

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-6817-8057
https://orcid.org/0000-0001-6817-8057
https://arxiv.org/pdf/1607.01341v9.pdf
https://docs.cardano.org/
https://arxiv.org/pdf/2108.01900v1.pdf
https://arxiv.org/pdf/2012.06128.pdf
https://arxiv.org/pdf/2012.06128.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://hedera.com/hh_whitepaper_v2.1-20200815.pdf
https://hedera.com/hh_whitepaper_v2.1-20200815.pdf
https://arxiv.org/pdf/1810.10360v1.pdf
https://arxiv.org/pdf/1907.03655v1.pdf

12 GRYBNIAK ET AL.

26. Szabo, N.: Smart contracts (1994). https://www.fon.hum.uva.
nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

27. Ante, L.: The Non-Fungible Token (NFT) Market and its relationship with
Bitcoin and Ethereum. BRL Work. Pap. Ser. 21, 1–15 (2021). https://doi.
org/10.2139/ssrn.3861106

28. Hoffmann, C. H.: Blockchain use cases revisited: micro-lending solutions
for retail banking and financial inclusion. J. Syst. Sci. Inf. 9(1), 1–15 (2021)

29. Malamud, S., Rostek, M.: Decentralized exchange. Am. Econ. Rev. 107(11),
18–25 (2017). https://doi.org/10.1257/aer.20140759

30. Schär, F.: Decentralized finance: On blockchain- and smart contract-based
financial markets. Federal Reserve Bank of St. Louis Review, Second
Quarter 103(2), 153–174 (2021). https://doi.org/10.20955/r.103.153-74

31. Zetzsche, D.A., Arner, D.W., Buckley, R.P.: Decentralized finance. J.
Financ. Regul. 6(2), 172–203 (2020). https://doi.org/10.1093/jfr/fjaa010

32. Lau, K.: Ethereum 2.0: An introduction (2020). https://
assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/
e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-
_Ethereum_2.0.pdf

33. Anceaume, E., Pozzo, A., Rieutord, T., Tucci-Piergiovanni, S.: On finality
in blockchains. arXiv:2012.10172v1 (2020). https://arxiv.org/pdf/2012.
10172.pdf

34. Anceaume, E., Pozzo, A., Rieutord, T., Tucci-Piergiovanni, S.: On
finality in blockchains (2021). https://hal-cea.archives-ouvertes.fr/cea-
03080029v2/file/Eventual_Finality.pdf

35. West, D.B.: Introduction to Graph Theory, 2nd ed. Pearson Education,
Inc., Boston (2001)

36. Mazurok, I., Pienko, V., Leonchyk, Y.: Empowering fault-tolerant con-
sensus algorithm by economic leverages. In: ICT in Education, Research
and Industrial Applications. Integration, Harmonization and Knowl-
edge Transfer. Part II: 7th International Workshop on Information
Technologies in Economic Research, pp. 465–472. Springer, Heidelberg
(2019)

How to cite this article: Grybniak, S., Leonchyk, Y.,
Mazurok, I., Nashyvan, O., Shanin, R.: Waterfall:
Gozalandia. Distributed protocol with fast finality and
proven safety and liveness. IET Blockchain 1–12 (2023).
https://doi.org/10.1049/blc2.12023

 26341573, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12023 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://doi.org/10.2139/ssrn.3861106
https://doi.org/10.2139/ssrn.3861106
https://doi.org/10.1257/aer.20140759
https://doi.org/10.20955/r.103.153-74
https://doi.org/10.1093/jfr/fjaa010
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://arxiv.org/pdf/2012.10172.pdf
https://arxiv.org/pdf/2012.10172.pdf
https://hal-cea.archives-ouvertes.fr/cea-03080029v2/file/Eventual_Finality.pdf
https://hal-cea.archives-ouvertes.fr/cea-03080029v2/file/Eventual_Finality.pdf
https://doi.org/10.1049/blc2.12023

	Waterfall: Gozalandia. Distributed protocol with fast finality and proven safety and liveness
	Abstract
	1 | INTRODUCTION
	1.1 | Our results
	1.2 | Implementation

	2 | AUXILIARY DEFINITIONS AND RESULTS
	2.1 | Directed acyclic graphs

	3 | PROTOCOL DESCRIPTION
	3.1 | Description of the Coordinating network
	3.2 | BlockDAG network description

	4 | PROPERTIES OF THE PROTOCOL
	4.1 | On the probability of creating blocks

	5 | TIME ADJUSTMENT
	5.1 | Coordinating network case
	5.2 | BlockDAG case
	5.2.1 | Observable topology
	5.2.2 | BlockDAG network synchronization speed

	6 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES

