

https://doi.org/10.1109/iGETblockchain56591.2022.10087077

Recurring Payments on EVM-based Platforms

Sergii Grybniak

Institute of Computer Systems

Odesa Polytechnic State University

Odesa, Ukraine

s.s.grybniak@op.edu.ua

Razvan Mihai

Faculty of Electronics,

Telecommunications and Technology

of Information (ETTI)

Politehnica University of Bucharest

Bucharest, Romania

razvan.mihai.phd@stud.etti.upb.ro

Gora Datta

Department of Civil and Environmental

Engineering

University of California Berkeley

Berkeley, United States

gora.datta@berkeley.edu

Nicolae Goga

Molecular Dynamics Group

University of Groningen

Groningen, Netherlands

n.goga@rug.nl

Igor Mazurok

Faculty of Mathematics, Physics, and

Information Technologies

Odesa I.I. Mechnikov National

University

Odesa, Ukraine

mazurok@onu.edu.ua

Omer Faruk Ozkul

Faculty of Engineering in Foreign

Languages (FILS)

Politehnica University of Bucharest

Bucharest, Romania

omer_faruk.ozkul@stud.fils.upb.ro

Oleksandr Nashyvan

Institute of Computer Systems

Odesa Polytechnic State University

Odesa, Ukraine

o.nashyvan@op.edu.ua

Yevhen Leonchyk

Faculty of Mathematics, Physics, and

Information Technologies

Odesa I.I. Mechnikov National

University

Odesa, Ukraine

leonchyk@onu.edu.ua

Constantin Viorel Marian

Faculty of Engineering in Foreign

Languages (FILS)

Politehnica University of Bucharest

Bucharest, Romania

constantinvmarian@gmail.com

Abstract—This article proposes a concept of building a

payment system for subscription-based services in cases of fixed

prices and with recurring frequency. The proposed solution offers

the user the opportunity for ease-of-use and transaction fee cost

savings. The proposed method of calculating balances for crypto-

wallets can be applied to other financial services that provide

traditional banking products based on decentralized public

platforms. The concept is deployed in the form of a smart contract

for issuing tokens on Ethereum, which is backward compatible

with ERC-20 and ERC-777, and can form the basis for a new

EVM-based decentralized network standard.

Keywords—recurring payment, token standard, smart

contract, accrual accounting, subscription-based service,

decentralized finance, blockchain.

I. INTRODUCTION

Most modern computer-distributed systems have
comprehensive infrastructures to support application
functions [1]. In such systems, program codes are
independently executed to a large extent, frequently on
multiple network nodes [2]. Such decentralized applications
(dapps) build on smart contracts that are part of the back-end
and stored on a distributed ledger. Smart contract logic is
implemented as a set of rules, recorded in open code (available
to the public), that are enforced automatically, enhancing trust
among participants. Cryptocurrency payments are transparent
and secure, which makes them attractive for both customers
and suppliers of goods and services [3].

Currently, the most popular system for implementing
smart contacts is the Ethereum network, which provides for
their execution via a unified Ethereum Virtual Machine
(EVM) [4] and supports the object-oriented programming
language, Solidity [5]. In addition, there is a number of
platforms such as Fantom, Polygon, Tron, Avalanche,
Waterfall, etc., which are compatible with the EVM.

Dapps have gained popularity in various social and
business sectors due to their transparency, logic consistency,
low market entry threshold, and low operating costs, relative
to traditional services [6]. In addition, the suppliers are
interested in accepting payments in cryptocurrencies in the
interest of expanding their customer base to a large number of
crypto-wallet holders. In exchange, consumers are given a
wider choice of goods and services and the opportunity to save
money by leveraging new payment systems.

The financial sector known as Decentralized Finance
(DeFi) has experienced rapid growth. Investment amounts
have increased rapidly, both in terms of the number of users,
and the variety of services provided. New dapps have emerged
recently, and the functionality of existing dapps has expanded
[7], [8]. However, a number of acute problems have arisen,
such as scalability, security, regulation, liquidity, usability,
etc. All of these issues have inhibited the widespread use of
dapps in the finance industry. A new generation of DeFi 2.0
protocols has emerged to resolve these problems, and to
increase the comfort of using dapps (so-called user-centric
design). This opens new possibilities for their mass adoption.

II. PROBLEM STATEMENT

In this work, we consider the following user story
addressing recurring payments. A customer and crypto-wallet
owner want to make automatic periodic payments, to ensure
timely payments and save money. Regular payroll, insurance
contributions, rental payments, and a host of other
subscription-based services are highly profitable business
scenarios for the proposed solution.

To do so, this customer must specify the supplier’s
account, the payment amount and frequency, and the contract
start and end dates, with a prolongation option. Alternatively,
the supplier of services may also play the contract initiator
role. If during the subscription period there are not enough

https://doi.org/10.1109/iGETblockchain56591.2022.10087077

funds in the customer's account, an action procedure is
required to initiate early termination of the contract.

III. RELATED WORKS

Cryptocurrency payments are based on the assumption
that the initiator of the payment is always the owner of the
wallet, because no one else can perform a transfer transaction
from an individual account. Automatic payments, particularly
recurring ones, are not natively supported by the most popular
smart contract platforms. As a rule, the decision to transfer
funds in such cases is based on the prior deposit of funds in
the smart contract account, at the initiative of the crypto-wallet
owner [9], [10]. In such custodial cases of holding funds, there
is a technical possibility to freely dispose of those funds
without the consent of their true owner. This allows for the
building of a system of regular payments, or even payments
on demand. In addition, a secondary market can be arranged
where subscriptions can be bought and sold.

A non-custodial solution has been proposed in [11] and
[12]. A customer immediately signs and sends a batch of
transactions to a supplier, who stores it off-chain. Each billing
period, the supplier signs and transmits one of these
transactions to the Ethereum blockchain. The appropriate
smart contract checks for validity and makes the payment.
This does not offer any savings in transaction fees, but it does
provide ease of use with fully automated crypto wallets.
Despite the contract not being approved and the corresponding
Ethereum Improvement Proposals (EIP-948 and EIP-1337)
being closed, some other projects have developed their own
solutions, based on this approach (e.g. [13], [14]).

Crypto exchanges (e.g. Binance [15], Crypto.com [16],
etc) also offer automatic purchases of cryptocurrencies with
credit cards, crypto, and fiat wallets. However, such solutions
are centralized, and clients are deprived of the advantages that
cryptocurrency provides – transparency and security.

Recent works [17], [18] have concluded that an entirely
new token standard be developed using the accrual accounting
method for convenient use and savings on transaction fees
which could make recurring payments possible in a non-
custodial manner. Such an approach can be seen as the next
step in payment system development based on blockchain
technology. However, the implementation of accrual
accounting in decentralized public networks poses new
challenges, since there is no mutual trust between participants.
Hence, smart contract logic must properly describe all
possible business scenarios and be resilient to various attacks.

IV. TOKEN STANDARDS

Dapps use a native (inner) token as a unit of account,
designed to represent the balance of a digital asset [19].
Enterprise-class dapps have their own ad-hoc economics
(tokenomics) to drive interactions between customers [20].
Therefore, smart contracts must be able to appropriately
support the various scenarios and mechanisms needed for their
implementation.

Tokens can be endowed with any properties implemented
by the programming language in which the corresponding
smart contract is written. However, to facilitate interactions

between diverse smart contracts and make them compatible, a
unified set of rules (functions or so-called standards), are
introduced [21].

ERC-20. Currently, the most popular token standard is
ERC-20, proposed in 2015 [22] and adopted in 2017 [23]. In
particular, the standard allows Ethereum wallets to interact
with one another by carrying out token transfer transactions,
which has led to the emergence and rapid development of the
''Initial Coin Offering'' (a type of fundraising or
crowdfunding) in the cryptocurrency industry [24]. ERC-20
also allows an account to give an allotment to another account,
to enable the retrieval of a predetermined amount of tokens
from it. However, with the current expansion of DeFi services,
its feature set appears to be significantly limited, and does not
allow a wide range of financial services to be fully
implemented. In addition, ERC-20 has several inherent
drawbacks and vulnerabilities [25].

ERC-777. The standard is backward compatible with
ERC-20, but has a number of advantages [26]. In particular,
an account can grant the right to send tokens on its behalf to
other contracts or regular accounts. The standard also provides
the ability to automatically cancel transactions with
incompatible contracts and flag untrustworthy addresses.
Token exchanges use one transaction instead of two, as in the
ERC-20. Currently, ERC-777 is the most flexible standard,
providing ample opportunities for use in the DeFi sector.
However, there are still some scenarios that cannot be fully
implemented.

V. PAYMENT LOGIC DESIGN

A. General Concept

The proposed payment system allows regular payments
without blocking funds, which arise in the system in reaction
to unsecured transfer transactions. Payment arrears may
occur, because it is impossible to guarantee that sufficient
funds are available in the account for the entire period when a
regular payment is created and confirmed.

We will call a “short-term payment commitment” (and put
into the debt queue) those payments for which the deadline is
approaching, but where there are not enough tokens in the
account. Information about credit histories is public and can
be collected from Ledger data. The party interested in the
payment has the opportunity to assess the payer's credit rating
and decide its reaction to the payment. For example, to decide
to provide services or transfer goods if the sender's credit
rating is high enough. If the sender’s credit rating is low, the
recipient of the payment may ignore the payment and choose
not to provide goods or services.

In case of insufficient funds in the subscriber's account, a
supplier follows the same logic when choosing between
granting credit or terminating the contract. In the latter case,
the supplier is obliged to send a termination transaction in
order to terminate the contract. Otherwise, he will
automatically default to granting credit, with the obligation to
provide the agreed-upon goods or services. Note that each
party has the right to terminate the contract at will at any time.
A customer must also send a transaction to terminate the

subscription’s validity and the corresponding payments for the
next billing period.

B. Balance and Transfer Types

To solve the problem, for each address, the following

elements are accounted for:

• final balance of made payments. Its value can be taken
only without negative values. A payment is considered
valid (even partially) if there are funds in the sender's
account at the time of transaction execution.

• debt repayment queue is formed on the basis of funds
transferred and calculation of the value of regular
payments. If the payment allows for partial execution,
only outstanding debts are taken into account.

• overdue debt to the account is the amount for which
the deadline has already arrived, but has not yet been
fully repaid due to insufficient funds in the payer's
account.

According to the type of payment initiator, funds
transactions are divided in the following three types: transfer
on the initiative of

1. a payer;

2. a recipient;

3. a third party who is neither the recipient nor the payer.

All of the above types of transfers have the following
properties.

Acceptance. Type 3 transactions may be accepting or non-
accepting to the beneficiary. Acceptance transactions require
the recipient's mutual or prior permanent consent to receive
funds in his account from the sender. Transactions in relation
to the payer are always accepted. Transactions of type 1 are
confirmed by the very act of sending with a signature, and do
not require the consent of the recipient. Type 2 and 3
transactions require reciprocal consent from the payer to debit
funds from his account. Confirmation for transactions of this
type can be issued in advance on a permanent basis, but with
an indication of the total amount of charges. In type 2
transactions, the recipient of funds is confirmed, and in type 3
transactions, their sender is confirmed.

Regularity. All listed transaction options can be both one-
time and recurring payments. In addition to the amount and
the addresses of parties for recurring payments, it is necessary
to specify additional attributes such as time of the first
payment, time of the end of payments, and their periodicity. A
transaction is rejected (considered invalid), if by the time of
forming a block with this transaction, the time of the first
regular payment has expired. In other words, so-called
backdated payments are forbidden.

When implementing a transfer transaction, three bit fields
must be provided for setting divisibility, confirmability, and
regularity flags.

C. Debt Processing

When funds appear in the account the debt queue is
reviewed, starting with the oldest debt, regardless of its type,
for repayment of debts formed earlier. Non-severable debts
are charged only if there are enough funds on the account, and
the severable debt can be repaid partially by the maximum
possible value. Review of the queue stops when the incoming
funds are exhausted. All debts that have not been charged
remain in the queue and will be reviewed the next time funds
are received.

We take a look at an example where transactions on
Alice’s account gradually pay off her debts. A capital letter
indicates the payee and an asterisk* marks the separable
transaction – in this case it is the first in the queue.

TABLE 1. AN EXAMPLE OF DEBT REPAYMENT

Debt queue
Transactions on

Alice’s account

Alice’s account

status

В*(20), С(100), B(1), C(2) 5 0

В*(15), С(100), B(1), C(2) 17 1

С(100), C(2) 50 49

С(100) 50 99

С(100) 10 9

D. Wire Transfer

The main problem with wire transfer payments is the need
for each transaction or request for account status to run the
entire chain of regular payments that have matured since the
last call, before paying off the debts in the queue. Obviously,
a smart contract cannot keep track of when the next regular
payment is due, at the moment of funds wiring. Calling
(execution of) a smart contract and all its work is done with
any transfer of funds or balance request on an account. During

the transaction procedure recalc(𝑖𝑑𝑓𝑟𝑜𝑚) is invoked for the

payment sender. The recalc(𝑖𝑑) procedure updates balances,
not only for the address specified in the argument, but also
for all those linked to it by regular payments or debts.

The state of the account – 𝑆𝑡𝑎𝑡𝑒(𝑖𝑑) for each address id
has information about the number of tokens account(𝑖𝑑) and

the debt queue, identified as 𝐷(𝑖𝑑) = 𝑄𝑢𝑒𝑢𝑒(𝑑𝑖
𝑖𝑑). In this

case, each regular payment to a certain address forms a
separate debt. A series of non-severable debts to the same
creditor are combined, while a series of severable debts is not.

Here is a step-by-step description of the recalc (𝑖𝑑)
algorithm:

1. If the procedure call is initiated by a funds transaction
from the address 𝑖𝑑 = 𝑖𝑑𝑓𝑟𝑜𝑚 to the address 𝑖𝑑𝑡𝑜, then

we add this payment to the queue of debts 𝐷(𝑖𝑑) =
𝐷(𝑖𝑑) ∪ 𝑑𝑡𝑥 and create a queue to browse addresses
𝑃𝑙𝑎𝑛 = {𝑖𝑑𝑡𝑜} and a list of addresses Neighbours =
{𝑖𝑑𝑡𝑜} to recalculate the balance.

2. Consistently, we look through all transactions of
regular payments in search of regular payments from
the address 𝑖𝑑. If another payment is found, we add it
to the debt queue in the order of increasing time stamp

𝐷(𝑖𝑑) = 𝐷(𝑖𝑑) ∪ 𝑑𝑡𝑥. If the address 𝑖𝑑𝑡𝑜 has not yet
been added to the watch queue, then we add it there
𝑃𝑙𝑎𝑛 = 𝑃𝑙𝑎𝑛 ∪ {𝑖𝑑𝑡𝑜} idto and expand the list of
nodes 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 = 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ∪ {𝑖𝑑𝑡𝑜} idto to
recalculate balances.

3. After all payments from the address id have been fully
processed, we exclude this address from the queue
𝑃𝑙𝑎𝑛 = 𝑃𝑙𝑎𝑛 ∖ {id}.

4. If 𝑃𝑙𝑎𝑛 = ∅, then we repeat step 2 for the first address
in the queue, 𝑖𝑑 ← 𝑃𝑙𝑎𝑛.

5. After the completion of breadth-first search (BFS)
[27] of the payments from the address 𝑖𝑑, we run a
similar reverse BFS algorithm to search for payments
to 𝑖𝑑. Consistently, we look through all transactions of
regular payments in search of regular payments to
𝑖𝑑 = 𝑖𝑑𝑡𝑜. If the next payment is found, then as in step
2, we add the debt queue and the list of nodes

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 = 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ∪ {𝑖𝑑𝑓𝑟𝑜𝑚} to the

recalculation of balances.
6. After completing the reverse BFS, we generate a list

of nodes 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 whose balances can have a
reciprocal effect on the initial balance 𝑖𝑑, as well as
update the queue of debts (payments that were not
made and yet to be paid) from these addresses 𝐷 =
{𝐷(𝑥)|∀𝑥 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠}.

7. To all 𝑥 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 we consistently review 𝐷(𝑥)
and make payments as long as the number of tokens
in the account allows it. Payments that have been
made are removed from the debt queue. If there are
insufficient funds for the next payment, we move on
to the next address.

8. If at least one payment is made in step 7, repeat step
7.

9. If no payment could be made, the process is
completed.

E. Clearing System

The smart contract implements a system of netting mutual
debts to reduce the mass of tokens in circulation and the
number of transactions for consistent repayment of mutual
debts. The procedure of clearing(𝑖𝑑) is called in the body of
the procedure recalc (𝑖𝑑) to resolve mutual settlements
blocked by insufficient funds.

Consider a case where a clearing system reduces the
computational complexity of mutual settlement. For
example, Alice owes Bob 100 tokens, and Bob owes Alice
100 or more tokens. Suppose that both accounts are empty,
and neither payment can be made due to insufficient funds. If
there is no offsetting of debts, even a single token received in
one of the accounts will trigger a large number of transfers.
So the token received by Alice will immediately go to Bob
for partial repayment of the debt, and will then immediately
return back to Alice. This circular token journey will be
repeated 99 times until both debts are paid off – a
counterproductive calculation.

A reduction in the necessary token supply is clearly
visible in the case of large mutual debts. For example, Alice
owes Bob 1000 tokens, and Bob owes Alice 1001 tokens. For
the actual balance in this situation, having a single token in

Alice's account is sufficient. However, 1001 tokens are
required for the situation to be formally resolved. This
requires the number of tokens in circulation to be greater than
necessary. In addition, these extra tokens will eventually end
up in either Alice's or Bob's account. Until this happens, the
contract memory will be tied up with storing excess
information. The clearing system will debit this kind of debt
without conducting transfer operations.

The clearing(𝑖𝑑) procedure, with the help of a depth-first
search (DFS) [27] from the node id, finds loops in the chains
of linked transfers and reduces the amount of debt by the
value of the smallest debt in the cycle. The smallest debt is
removed because it is completely paid off. At that point,
DFS (𝑖𝑑) is repeated, to identify the new cycle, or to
determine the impossibility of mutual debt charging.

VI. IMPLEMENTATION

The proposed payment and token accounting scheme,
which allows for regular payments, is implemented as a smart
contract running on the Ethereum network, or another system
with a compatible virtual machine. Two smart contracts were
developed for backward compatibility with ERC-20 and
ERC-777 standards respectively. The tokens issued on their
basis demonstrated the declared properties. The functionality
of smart contracts is currently being expanded, and the
algorithms are being optimized. The code and test results are
in the public domain https://github.com/waterfall-
foundation/recurring-payment-contract.

We consider, for example, the interface for the ERC-20
standard-based token smart contract. The following structure
is used to store the necessary data:

struct RegularPayment {

uint256 id;

address from;

address to;

uint startTime;

uint endTime;

RegularPaymentInterval interval;

uint256 amount;

bool isApprovedFrom;

bool isApprovedTo;

bool autoProlongation;

address creator;

}

Further, we describe the functions included in the
interface. The basic function `createRegularPayment`

for creating a recurring payment (even if it only happened
once) looks like this:

function createRegularPayment(

address from, address to,

uint startTime, uint endTime,

RegularPaymentInterval interval,

uint256 amount, bool autoProlongation)
external returns (uint256 id)

The call arguments specify the payment participants, the
time interval and frequency of payments, a fixed payment
amount, and the possibility of automatic extension to the next
time interval equal to the original one. If you want the
recurring payments to span indefinitely, you should specify
the maximum value for `uint` for the end-of-time period

https://github.com/waterfall-foundation/recurring-payment-contract
https://github.com/waterfall-foundation/recurring-payment-contract

parameter. The function returns Regular Payment `id`

indicating whether the operation succeeded. It can emits the
`CreatedRegularPayment` event:

event CreatedRegularPayment(

uint256 id, address creator,

address from, address to,

uint startTime, uint endTime,

RegularPaymentInterval interval,

uint256 amount, bool autoProlongation)

This event emitted, when Regular Payment `id` is created

by `creator`. The payer and/or recipient must confirm the

payment if it was created by someone else. Without such
confirmation, the payment will be ignored by the system. The
function `approveRegularPayment` is used to confirm

the payment:

function approveRegularPayment

(uint256 id)

external returns (bool success)

The function returns a boolean value indicating whether
the operation succeeded and can emits an
`ApprovedRegularPayment` event:

event ApprovedRegularPayment(uint256 id,

address user)

The event emitted, when the Regular Payment `id` is

approved by `user`. Both the payer and the payee can

cancel further regular payments from a certain point in time.
For this, the function `cancelRegularPayment` is used:

function cancelRegularPayment

(uint256 id, uint endTime)

external returns (bool success)

The function call signals about cancel Regular Payment
`id` by the message sender. The parameter `endTime` is

last date, when Regular Payment will be work. If `endTime`

may be zero in which case `endTime` will be now, but not

before the block in which the corresponding transaction will
be written. The function returns a boolean value indicating
whether the operation succeeded and emits the
`CanceledRegularPayment` event:

event CanceledRegularPayment

uint256 id, uint endTime, address user)

This event emitted, when the Regular Payment `id` is

planned to cancel by `user` in `endTime`. The interface

also contains some functions for checking the status of
accounts and regular payments. Returns all unpaid Regular
Payments by `user`:

function checkRegularPaymentsByUser

(address user)

external view returns (RegularPayment[]

memory)

Returns the Regular Payment by `id`:

function getRegularPayment

(uint256 id)

external view returns (RegularPayment memory)

Returns all Regular Payments by the message sender:

function getMyRegularPayments()

external view returns (RegularPayment[]

memory)

Returns all Regular Payments by `user`:

function getRegularPaymentsByUser

(address user)

external view returns (RegularPayment[]
memory)

Returns all Active Regular Payments by `user`:

function getMyActiveRegularPayments()

external view returns (RegularPayment[]

memory)

Returns all Active Regular Payments by a message
sender:

function getActiveRegularPaymentsByUser

(address user)

external view returns (RegularPayment[]

memory)

Returns the unpaid amount of Regular Payment by `id`:

function getRegularPaymentAmount

(uint256 id)

external view returns (uint256 amount)

The main interface functions of the ERC-20 standard
remained unchanged. This allows new tokens to be backward
compatible with ERC-20 tokens, wallets and dapps that
support them:

function balanceOf(address account)

external view returns (uint256);

function transferFrom

(address from, address to, uint256 amount)

external returns (bool);

function transfer

(address to, uint256 amount)

external returns (bool)

However, when implementing these functions, the smart
contract is supposed to carry out lazy evaluation (call-by-
need) [29]. Those all regular payments are made only at those
moments when we need to know the number of tokens in the
account. This allows you to save computing power in case of
short periods or a large number of regular payments in not
very active accounts.

 For example, Alice subscribed to a service for 10 token
payable weekly and had 100 tokens on her account at the start
of the subscription. After three weeks, she checks her balance
by calling the smart contract with balanceOf method, and the
smart contract executes: 100 − (10 ∗ 3) = 70 tokens
provided no other transfers to/from Alice’s account. A node,
which got Alice’s call, uses network time synchronized
between nodes. Further, after one more week (four weeks
from Alice’s subscription inception), Bob sends 5 tokens to
Alice: 70 + 5 − 10 = 65 tokens on the account. In this case,
the current date is obtained from the timestamp of the block
in which Bob’s transaction was included.

VII. CONCLUSIONS

The proposed new type of token can be used to deploy
regular and recurring payments, e.g., providing loans with the
settlement of credit histories or creating other traditional
banking products in a decentralized environment. The chief
advantage of the proposed solution is that there is no need to
manually make recurring payment every billing period whilst
offering easy of use and ensuring the sum of all transaction
fees is less than the sum of fees of regular transfers.

Despite the fact that the smart contract is implemented for
EVM-based platforms, the algorithms described in the work
could be applied in other systems supporting smart contracts.

In the future, smart contracts may add the functions of
suspending subscriptions, accrue late fees on incurred debts,
etc. The possibility of interaction with Ethereum oracles [28],
which, for example, could recalculate the amount of payment
based on a fiat currency exchange rate or give confirmation of
work performed, is also of interest. Non-custodial and fully
open decentralized solutions expand the scope of
opportunities and services provided to users of cryptocurrency
platforms, which are typical for conventional banking
products in payment systems. At the same time, the important
advantages of public decentralized networks, such as
transparency and security, will not be lost.

ACKNOWLEDGMENT

The technical details contained in this paper have been
developed and prepared based on regular technical discussion
and exchanges between members of Politehnica University
of Bucharest, IEEE, Odesa Polytechnic State University,
Odesa I.I. Mechnikov National University, and University of
California Berkeley.

REFERENCES

[1] T. Hewa, M. Ylianttila, and M. Liyanage, “Survey on blockchain based
smart contracts: Applications, opportunities and challenges,” Journal
of Network and Computer Applications, 177, 2021.

[2] C. Antal, T. Cioara, I. Anghel, M. Antal, and I. Salomie, “Distributed
ledger technology review and decentralized applications development
guidelines,” Future Internet, 13 (3), p. 62, 2021.

[3] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Toward fairness of
cryptocurrency payments,” IEEE Security & Privacy, 16(3), pp 81-89,
2018.

[4] E. Hildenbrandt, et al., “KEVM: A complete formal semantics of the
Ethereum virtual machine,” IEEE 31st Computer Security Foundations
Symposium (CSF), pp. 204-217, 2018.

[5] C. Dannen, “Introducing Ethereum and solidity,” Berkeley: Apress,
vol. 1, 2017.

[6] K. Wu, Y. Ma, G. Huang, and X. Liu, “A first look at blockchain‐
based decentralized applications,” Software: Practice and Experience,
51(10), pp. 2033-2050, 2021.

[7] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. J. Knottenbelt, “Sok: Decentralized finance (DeFi),” arXiv preprint
arXiv:2101.08778, 2021.

[8] R. Selkis, “A Messari report: Crypto Theses for 2022,” Messari, p. 165,
2022.

[9] P. Merriam, “Ethereum alarm clock,” 2018. [On-line]. Available:
https://github.com/ethereum-alarm-clock/ethereum-alarm-clock.

[10] J. Lai, “EIP-4885: Subscription Token Standard for NFTs and Multi
Tokens,” 2022, [On-line]. Available:
https://eips.ethereum.org/EIPS/eip-4885.

[11] K. Owocki, et al., “Recurring Subscription Models are a Good Thing
and should be viable on Ethereum (Merit + Architecture ERC),” 2018.
[On-line]. Available: https://github.com/ethereum/EIPs/issues/948.

[12] K. Owocki, et al., “EIP-1337: Subscriptions on the blockchain,” 2018.
[On-line]. Available: https://eips.ethereum.org/EIPS/eip-1337.

[13] S. Burke, “How Groundhog uses the Gas Station Network,” 2019. [On-
line]. Available: https://medium.com/groundhog-network/how-
groundhog-uses-the-gas-station-network-9a2530c8b715.

[14] M. Aggarwal, “Replayable Transactions, EIP 1337 implementation on
Tezos,” 2020. [On-line]. Available:
https://forum.tezosagora.org/t/replay-able-transactions-eip-1337-
implementation-on-tezos/2248.

[15] Binance, "How to Use Recurring Buy," [On-line]. Available:
https://www.binance.com/en/support/faq/3b628537b6314964bb08b5b
22fab6c18.

[16] Crypto.com, "Recurring Buy – How does it work?" [On-line].
Available: https://help.crypto.com/en/articles/4170965-recurring-buy-
how-does-it-work.

[17] R. Mihai, “Universal Contract on Blockchain,” Economics of Financial
Technology Conference, Edinburgh, 2022.

[18] R. Mihai, O. F. Ozkul, G. Datta, N. Goga, S. Grybniak, and C. V.
Marian, “Blockchain-Enabled Economic Transactions: Recurring
Financial Accruals and Payments,” unpublished.

[19] M. Shirole, M. Darisi, and S. Bhirud, “Cryptocurrency token: An
overview,” IC-BCT 2019, pp. 133-140, 2020.

[20] S. Au and Th. Power, “Tokenomics: The Crypto Shift of Blockchains,
ICOs, and Tokens,” Packt Publishing Ltd, 2018.

[21] L. Lesavre, P. Varin, and D. Yaga, “Blockchain Networks: Token
Design and Management Overview,” Internal Report 8301, National
Institute of Standards and Technology, 84 p., 2021. [On-line].
Available: https://doi.org/10.6028/NIST.IR.8301.

[22] F. Vogelsteller and V. Buterin, “ERC-20: Token Standard,” 2015. [On-
line]. Available: https://eips.ethereum.org/EIPS/eip-20.

[23] T. Hale, “Resolution on the EIP20 APIi Approve/TransferFom
multiple withdrawal attack,” 2017. [On-line]. Available:
https://github.com/ethereum/EIPs/issues/738.

[24] P. Cuffe, “The role of the ERC-20 token standard in a financial
revolution: the case of initial coin offerings,” IEC-IEEE-KATS
Academic Challenge, Busan, 2018.

[25] R. Rahimian, and J. Clark, “TokenHook: Secure ERC-20 smart
contract,” preprint arXiv:2107.02997, 2021.

[26] J. Dafflon, J. Baylina, and T. Shababi, “ERC-777: Token Standard,”
2017. [On-line]. Available: https://eips.ethereum.org/EIPS/eip-777.

[27] D. C. Kozen, "Depth-first and breadth-first search," The design and
analysis of algorithms, New York, NY: Springer, pp. 19-24, 1992.

[28] B. Liu, P. Szalachowski, and J.Zhou, “A first look into defi oracles,”
IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS), pp. 39-48, 2021.

[29] P. Henderson and J. H. Morris Jr, “A lazy evaluator,” Proceedings of
the 3rd ACM SIGACT-SIGPLAN, pp. 95-103, 1976.

