
Subnetworks in BlockDAG
Oleksandr Antonenko

Faculty of Mathematics, Physics
and Information Technologies

Odesa I.I. Mechnikov National University
Odesa, Ukraine

antonenko@onu.edu.ua

Sergii Grybniak
Institute of Computer Systems

Odesa Polytechnic State University
Odesa, Ukraine

s.s.grybniak@op.edu.ua

Denis Guzey
Faculty of Mathematics, Physics

and Information Technologies
Odesa I.I. Mechnikov National University

Odesa, Ukraine
d1onat1d@gmail.com

Oleksandr Nashyvan
Institute of Computer Systems

Odesa Polytechnic State University
Odesa, Ukraine

o.nashyvan@op.edu.ua

Ruslan Shanin
Faculty of Mathematics, Physics and Information Technologies

Odesa I.I. Mechnikov National University
Odesa, Ukraine

ruslanshanin@onu.edu.ua

Abstract—In the article, we study the horizontal scaling of
the Waterfall or similar blockDAG networks by partitioning
them into subnetworks by applying hierarchical and graph-based
clustering algorithms. It leads to the reducing the network load
and, in addition, to the increasing of the potential performance
parameters of the underlying protocol. We consider methods
of topology construction, propose clustering algorithms, and
perform a simulation of a network partitioning into subnetworks.

Index Terms—blockDAG, clustering, scalable blockchain,
scale-out, subnetwork, Waterfall

I. INTRODUCTION

In modern world, blockchain technologies and their gen-
eralizations have become widespread and play an important
role in multiple industries. The use of blockchain to store and
distribute information in decentralized distributed networks is
limited by poor scalability and low transaction speed [1]. One
solution is to use a directed acyclic graph (DAG) structure
instead of a chain one. This leads to the emergence of
blockDAG networks. The data structure in the form of a DAG
allows the simultaneous creation of several blocks and has
been studied in many works [2]–[7]. Other approaches to
solving these problems have also been proposed: sharding [8]–
[12], Layers [13], [14], etc.

In the paper, we consider the problem of scalability the
blockDAG Waterfall network [15], [16]. We will focus on
a concept of subnetworks which suggests that some infor-
mation is not distributed throughout the network, but only
among some set of nodes, which we will call a subnetwork.
Since several blocks are created in blockDAG networks in
one round of work and, thus, there is no need to send all
transactions throughout the network, we can use subnetworks
to separate the set of transactions, which does not make sense
in conventional blockchain systems. Also, partitioning into
subnetworks, we build methods which reduce the network
latency within the subnetworks while keeping the subnetworks

1https://ieeexplore.ieee.org/document/10087101

roughly the same size. This innovative approach allows us to
reduce network load and gives us a partial solution of the
problem of the simultaneous creation of blocks with some
identical transactions. Note that the concept of subnetworks
has been used in other way in some blockchain protocols.
For example, in Ethereum 2.0 [17], Kaspa [18] and TON
[12], subnetworks are used for division of nodes into different
subgroups to perform additional tasks.

Thus, in the paper, we consider the division of the Wa-
terfall network into subnetworks and appropriately dividing
the transaction pool into disjoint subpools for reducing the
network load.

II. PROBLEM STATEMENT

First, let us review the necessary points related to the
operation of the Waterfall network. The time of work of the
Waterfall network is divided into rounds, called slots, and
epochs, which are used to summarize the work of the network.
At the beginning of each epoch, a list of committees for the
next epoch is determined, and at the beginning of each slot,
the workers who will create a block in that slot are determined.

A BlockDAG network node contains a pool of transactions
that are waiting to be added to a block or finalized and also
a local copy of the BlockDAG ledger. Multiple validators can
work on a single BlockDAG node.

The basic idea of subnetting (partitioning into subnetworks)
is that each node will belong to some single subnetwork and
will only store and distribute transactions of that subnetwork.
At the same time, it will receive, store and distribute all blocks
of blockDAG and, thus, will have a complete copy of the entire
blockDAG repository.

A. Requirements to partitioning into subnetworks

Let us begin our consideration of partitioning into subnet-
works by discussing the challenges and problems that arise
in the process. First, it is obvious that all nodes contain-
ing validators must belong to some subnetwork. Also, since

https://ieeexplore.ieee.org/document/10087101

nodes from different subnetworks will have different sets of
transactions and all correct transactions must be published to
blockDAG, each subnetwork must contain nodes that have
validators on them.

Since the validator does not create the block often, and the
transactions must be processed as quickly as possible, then
subnetwork validators must “frequently” create blocks. This
requirement can be interpreted in a number of ways. First, it
can be understood in the probabilistic sense that, on average, at
least one block per slot is created in each subnetwork. Second,
it can be understood in the deterministic sense that in each
subnetwork it is created at least one block per slot.

Partitioning the network into subnetworks requires a method
for obtaining information about the links in the network.
Immediately note that, since each subnetwork must have val-
idators, the information required for clustering must contain,
in particular, information about the presence and number of
validators in the network nodes, which, generally speaking,
can generate new types of threats and attacks. To prevent
this, we introduce the notion of “virtual node”, and we will
work with virtual nodes when partitioning the network into
subnetworks.

Finally, another important requirement for a clustering
method is speed. Unfortunately, most methods of clustering
data are quite slow, and when handling large volumes of data,
they require greater computing power. Thus, we focus on
algorithms that work at speed O(m logm), where m is the
number of virtual nodes.

III. SUBNETTING APPROACHES

We will refer to a virtual node as a set of validators that
we assume share a common transaction pool and are located
on the same physical node. By default, each validator is
considered as a virtual node. To combine validators into a
virtual node or to change the composition of a virtual node,
validators must publish the appropriate transactions to the
network.

Let us consider several approaches to subnetting (partition-
ing into subnetworks) with all of the above in mind:

1) The block creator selection system does not change.
a) The network is divided into subnetworks with the

sole restriction that subsets cannot be too small.
The advantage of this solution is the simplicity
and the undemanding nature of the clustering al-
gorithm. The disadvantage of this solution is the
fact that, on smaller subnetworks, blocks will be
generated much less frequently, and the frequency
of block generation is not guaranteed. Thus, trans-
actions could potentially hang for long periods of
time.

b) The network is divided into subnetworks which
contain approximately equal numbers of validators.
In this case, the number of blocks created in the
slot should not be less than the number of sub-
networks. Assuming an even distribution of block

creators, on average at least one block per slot it
will be created in each subnetwork.

2) The block creator selection system is tied to subnet-
works, namely, block creators in each slot are selected
from members of the subnetwork:

a) The network is divided into subnetworks that con-
tain approximately equal numbers of validators.
In this case, the number of blocks, created in a
slot, is a multiple of the number of subnetworks.
This method works most predictably, but requires
special properties from the clustering algorithm.

b) The network is divided into subnetworks, and the
number of validators in each subnetwork may dif-
fer significantly (for example, by no more than two
or three times). In contrast to the previous point,
in order to maintain approximately equal probabil-
ity of block creation by all validators, additional
mechanisms must be introduced to ensure that the
probability of block creation by participants in
different subnetworks is the same.

Note that in case 2) a necessary requirement is that all
validators know the composition of subnetworks (the distri-
bution of validators across subnetworks), which limits the
choice of clustering methods. In this paper, we study the
second approach when partitioning into subnetworks. Also,
since clustering must be identical at every node, we suppose
that all nodes will execute the clustering algorithm based on
the finalized part of the ledger before some fixed slot.

IV. BUILDING A NETWORK TOPOLOGY

A. Notations and preliminary remarks

Further we assume that the set V of all validators of the
network is given, |V| = n is the number of validators, and
some class N of subsets of V is given, N ⊆ 2V , whose
elements are virtual nodes, |N | = m is the number of virtual
nodes. We assume that any two elements of the class N either
coincide or do not intersect, and each of the validators belongs
to some virtual node. We additionally impose a restriction that
a virtual node cannot contain many validators, namely, there
is such natural number L, that for any virtual node N ∈ N ,
the inequality |N | ⩽ L holds, where, by |N |, we denote the
number of validators in the virtual node N . This condition
is important, because otherwise there could be substantial
problems with the uniform distribution of validators across
subnetworks.

Let us formulate our problem in the described terms: it
needs to partition the set of nodes N on k subsets (clusters,
subnetworks) Cl1, Cl2, . . . , Clk so that Cl1∪Cl2∪. . .∪Clk =
N and Cli ∩Clj = ∅ if i ̸= j, which means that each virtual
node is included in exactly one cluster. In what follows we
will denote the set of clusters as C, C = {Cl1, . . . , Clk}.

B. Information collection methods

In what follows by era we mean some fixed period of time
such that during this period of time all network participants

will create at least one block. Information about the connec-
tions between virtual nodes is collected and published within
the era. Let us describe this procedure.

Let N1 and N2 be two arbitrary nodes, and let validator
v ∈ N1 fix q times the distance between the virtual nodes N1

and N2. When one of validator of node N2 publishes a block
in blockDAG, some time later this block gets to validator v.
At that moment, it fixes the delay dq+1 according to the slot
beginning and calculates a new distance between virtual nodes
N1 and N2 by the following formula:

dv,q+1(N1, N2)

=

{
q

q+1dv,q(N1, N2) +
1

q+1dq+1 if q ⩽ Q,
Q

Q+1dv,q(N1, N2) +
1

Q+1dq+1 if q > Q.

Also we set dv,0(N1, N2) = d0. Hence, all validators of the
node N1 (or the physical nodes on which they reside) store
information about the average delay for the blocks of each
other virtual node (except for those that have not yet published
blocks, or have not published blocks for a very long time, i.e.
have been offline for a long time).

At the moment when it is the turn of the validator v of
node N1 to publish its block, it selects from all virtual nodes
(except its own) s nodes with the least delays dv(N1, N2), and
publishes the list of s identifiers of virtual nodes and delays
to them.

C. Topology of network of virtual nodes

For any two virtual nodes N1, N2 ∈ N we denote by
V (N1, N2) = {v ∈ N1 ∪N2 : ∃dv(N1, N2)} the set (possibly
empty) of all validators, that have published distances between
nodes N1 and N2, where we denote by dv(N1, N2) the
published validator v distance between nodes N1 and N2,
dv(N1, N2) = dv(N2, N1), and write

D(v) = {d : ∃N1, N2 ∈ N dv(N1, N2) = d}

for the set of all distances published by the validator v. Thus,
if some validator v ∈ N1 ∪N2 publishes a distance between
nodes N1 and N2, then it is counted as the distance from N1

to N2 as well as the distance from N2 to N1.
If V (N1, N2) ̸= ∅, then we define d1(N1, N2) — the

average distance between nodes N1 and N2 — as follows

d1(N1, N2) =
1

|V (N1, N2)|
∑

v∈V (N1,N2)

dv(N1, N2),

where the sum is taken over all published distances between
nodes N1 and N2.

For virtual nodes N1 and N2 such that V (N1, N2) ̸= ∅ we
also define the distance dmax as follows

dmax(N1, N2) =
1

|N1|+ |N2|
∑

v∈N1∪N2

dmax
v (N1, N2),

where dmax
v (N1, N2) = dv(N1, N2) if v ∈ V (N1, N2) and

dmax
v (N1, N2) = max{maxD(v), d1(N1, N2)} if v does not

belong to V (N1, N2).

In what follows, we denote by d(N1, N2) one of the
values d1(N1, N2) or dmax(N1, N2). We will assume that
the values d1(N1, N2) and dmax(N1, N2) are undefined if
V (N1, N2) = ∅, that is, if no validator has published
distances between nodes N1 and N2. Thus, we can say that
the published distances d(N1, N2) define an undirected graph
G = (N , E), where the set of edges coincides with those
pairs of nodes between which the distance is published, i.e.
E = {(N1, N2) ∈ N 2 : V (N1, N2) ̸= ∅}, weights of nodes
are equal to the number of validators in them w(N) = |N |,
and weights of edges are equal to d(N1, N2). Note that we
suppose that the graph G is connected which is confirmed by
numerical experiments at s ⩾ 10.

D. Clustering into roughly equal clusters

As mentioned earlier, we are trying to achieve an approx-
imate equality in the number of validators in all clusters. Of
course, exact equality cannot be achieved because the total
number of validators |V| = n may not be a multiple of k, and
we divide into clusters not validators, but virtual nodes, which
may contain up to |N | ⩽ L validators.

Therefore, we formalize the notion of approximate equality
as follows: let us call the number of validators in a cluster the
cluster weight and denote it by

w(Cl) =
∑
N∈Cl

|N | =
∑
N∈Cl

w(N).

We will say that the clusters Cl1, Cl2, . . . , Clk roughly equal
in number of validators if w(Clj) ⩽ w(Cli) + L for every i,
j ∈ {1, ..., k}, i ̸= j. It is easy to see that such partitioning
into clusters always exists.

E. Balancing block generation

Let in the division of the entire network of nodes, we obtain
k subnetworks (clusters) of different sizes, namely, the sizes
w(Cl1) ⩽ . . . ⩽ w(Clk). Let an era consist of R slots. Then
the smallest subnetwork generates one block per slot, and then
all the others in proportion to their size, i.e. i-th network will
generate

[
w(Cli)
w(Cl1)

R
]

blocks per era.
Let S blocks be generated by some subnetwork in an era. In

the j-th slot it is generated sj =
[
S
R j

]
−
[
S
R (j − 1)

]
blocks. If

more than one block needs to be generated in the i-th slot, the
entire transaction pool is divided into “baskets”, depending on
the remainder of the transaction hash divided by sj .

V. HIERARCHICAL CLUSTERING

When selecting clustering methods that meet the above
requirements, we settled on variations of hierarchical clus-
tering methods. Modifications of divisive and agglomerative
hierarchical clustering algorithms were considered (for more
details of these algorithms, see, for example, [19], [20]).

A. Agglomerative hierarchical clustering (AHC)

In this approach, we cannot guarantee that the obtained
clusters will have approximately equal sizes. Nevertheless,
with the specially introduced distance between clusters, we

increase the probability that the weights of the maximum and
minimum clusters will not differ by more than a factor of 2.
Let us denote by M = |V|

k and let

wc(Cl) =

{
w(Cl) if w(Cl) ⩽ M − 1,

M − 1 + w(Cl)−M
w(Cl) if w(Cl) > M − 1.

Also we set P (Cl1, Cl2) =
M

M−wc(Cl1)
M

M−wc(Cl2)
. Then we

define the distances between clusters as follows

distmax(Cl1, Cl2) = P (Cl1, Cl2) max
a∈Cl1, b∈Cl2

V (a,b)̸=∅

d(a, b),

distmin(Cl1, Cl2) = P (Cl1, Cl2) min
a∈Cl1, b∈Cl2

V (a,b)̸=∅

d(a, b).

In some sense, we can think that dmax(Cl1, Cl2) is a
variation of complete linkage hierarchical clustering, and
dmin(Cl1, Cl2) is a variation of single linkage hierarchical
clustering, with an additional factor penalizing “heavy” clus-
ters.

B. Divisive hierarchical clustering (DHC)

Classic divisive hierarchical clustering algorithms [19] work
as follows:

1) Each time, some cluster is divided into two parts.
2) In the divided cluster there are the most distant points,

which become the starting points of new clusters.
3) Using these points, all other points in the cluster are

added to some cluster by certain rules.
We modify each of these steps according to the requirements

formulated above. First, we consider the following methods for
finding two vertices for the second step:

1) Find the most distant vertices in a weighted graph
(O(m2s logm) operations).

2) Find the most distant vertices in an unweighted graph
(O(m2s) operations).

3) Find some distant vertices in a weighted graph
(O(ms logm) operations).

4) Find some distant vertices in an unweighted graph
(O(ms) operations).

The basic idea of finding some distant vertices in a graph
is as follows: take an arbitrary graph vertex, call it N0, find
the vertex N0 farthest from vertex N0, then find the vertex N2

farthest from vertex N1 in the same way.
The most distant vertex from some vertex N of the graph is

found as follows: Start the traversal of the graph starting from
vertex N , the most distant vertex is the last vertex in this
traversal. If we use breadth-first search (BFS) as a traversal,
the pair N1, N2 will be the furthest in terms of number of
edges between them (i.e. the furthest in an unweighted graph),
and if we use Dijkstra’s traversal [21], then the pair N1, N2

will be the most distant in terms of the length of shortest path
between them (as sum of weights of edges, in the weighted
graph). In an arbitrary graph this double traversal algorithm
will not find a pair of vertices with maximal distance. But it

will still find a pair of sufficiently distant vertices, which can
be taken as a base pair.

Once the two base vertices are chosen, we need to partition
the graph into two clusters. The basic idea of partitioning is
very simple: one by one, we enroll the nearest vertices to
the base vertices into their clusters, observing two important
conditions each time: cluster size ratio is as close to the
desired ratio as possible and both clusters are connected
graphs.

We use the following approaches to determine the vertex
closest to the cluster:

1) traverse vertices by BFS (aka wave method) as if the
graph were unweighted, using edge weights only to
determine the order of passing neighbors of the next
vertex (we process the nearest neighbors first);

2) traverse vertices by Dijkstra’s algorithm in a weighted
graph, passing first the nearest vertices in terms of
distance from the base vertex;

3) traverse vertices by Prim algorithm [22] (as in construc-
tion of minimal spanning tree), passing first the nearest
vertices in the sense of distance from any vertex of the
cluster part already built at that moment.

VI. ASSESSING THE QUALITY OF CLUSTERING

To assess the quality of clustering we will use the following
indicators.

A. Silhouette

Let Ni ∈ Clj and a(Ni, Clj) =
1

|Clj |
∑

N∈Clj
d(Ni, N) be

the average distance from node Ni to other objects of cluster
(compactness) and let

b(Ni, Clj) = min
Cl∈C\Clj

1

|Cl|
∑
N∈Cl

d(Ni, N)

minimum average distance from node Ni to objects from
other clusters (separability). Then the estimation of clustering
quality will be the following value (silhouette [23]):

Sil(C) = 1

m

∑
Cl∈C

∑
N∈Cl

b(N,Cl)− a)N,Cl)

max{a(N,Cl), b(N,Cl)}
.

It is easy to see that −1 ⩽ Sil(C) ⩽ 1. The closer Sil(C) is
to 1, the better the clustering.

B. Sphericity index

We call a node NCl the center of a cluster Cl if∑
A∈Cl

d(A,NCl) = min

{ ∑
A∈Cl

d(A,N) : N ∈ Cl

}
.

Let S(C) = 1
k

∑
Cl∈C

1
|Cl|

∑
A∈Cl d(A,NCl) be the average

distance from cluster centers to cluster elements,

T (C) = 1

k2 − k

∑
A,B∈C,A̸=B

d(NA, NB)

be the average distance between cluster centers and

IS =
T (C)− S(C)

T (C)
.

The parameter IS shows the sphericity of clustering. The
closer this parameter is to 1, the better the clustering.

C. Diameter index

Let D(X) = {d(a, b) : a, b ∈ X} be the diameter of the set
X and let

ID =
D(N)−maxCl∈C D(Cl)

D(N)

be the diameter index. This index shows how much the
diameter of clusters is smaller than the diameter of the whole
network, and varies from 0 to 1. The closer this parameter is
to 1, the better the clustering.

D. Standard deviation index

For the set X we denote

Dsq(X) =

 1

|X|2 − |X|
∑

A,B∈X,A ̸=B

d2(A,B)

 1
2

.

Then the standard deviation index is

Isq(C) =
Dsq(N)− E(Dsq, C)

Dsq(N)
,

where E(Dsq, C) = 1
k

∑
Cl∈C Dsq(Cl).

E. Uniformity of cluster weights

Let IW =

(
1
k

∑
Cl∈C

(
w(Cl)
|V| − 1

k

)2
) 1

2

be standard devia-

tion of the relative weights of clusters from the best value.

VII. MODELING

The input data for modeling are the set of nodes of
blockDAG and the number of validators on each of them.
To simulate distances dv(N1, N2) between nodes, we use
a “geographic” model, where each node is defined by a
point with coordinates (x, y). The distance between nodes
dv(N1, N2) is modeled by the formula

dv(N1, N2) = delay(N2) + cvde(N1, N2),

where delay(N2) is some random block generation delay by
node N2 (depends only on node N2), cv ≈ 1 is some ran-
dom factor symbolizing link instability (each time generated
independently) and de(N1, N2) is the Euclidean distance.

In total, 30 datasets were generated, each one consisted of
300 nodes with random coordinates and a random weight from
1 to 25.

The simulation results are summarized in Table I. During
the simulation process, the algorithms were divided into 2
groups: agglomerative and divisive. To specify each particular
algorithm, a number of parameters were introduced to describe
the internal behavior of a given algorithm. These parameters
are separated by a dash or comma.

The first parameter tells the type of algorithm, the second
describes the distance function (d1 or dmax). For agglomer-
ative algorithms, the third parameter describes the distance
function between clusters (distmax or distmin). For divisive

algorithms, the third parameter denotes the algorithm that is
used to find the farthest nodes. The name double traverse
denotes the double traverse method, where traverse is the
graph traversal method (BFS or Dijkstra), global traverse is
that traverse is run in turn from each vertex to find the
maximum distance in the entire graph. The last parameter
specifies the traversal method for clustering (BFS, sorted bfs,
dijkstra, prim).

VIII. CONCLUSION

In this paper, we consider the problem of partitioning
the Waterfall network (or similar blockDAG networks) into
subnetworks to optimize network interaction between nodes.
The paper considers the main approaches to such partitioning,
in particular, the question of the need to change the block
generation rule, and the basic requirements of the node clus-
tering algorithm. The main approach is to publish nearest
neighbor metric information by each validator in blockDAG at
the moment when a new block is published by this validator.

We introduce a notion of virtual node to separate the storage
level of blockDAG from network level and formulate methods
to collect and publish information that reflects the quality
of communication of virtual nodes. Methods are formulated
that allow all nodes of the blockDAG network to retrieve
from the published information an undirected weighted sparse
graph of links between virtual nodes. Thus, we are reduced
to the problem of graph clustering of virtual nodes, with
additional conditions on the low computational complexity of
the algorithm, and the approximate equality of the obtained
clusters by the number of validators in them. This paper
presents different variations of hierarchical agglomerative and
divisional algorithms, modified specifically to solve this prob-
lem. The main clustering quality metrics are also considered.
In addition, modeling of these algorithms was conducted, and
the results of their work on model sets were obtained.

As a result of numerical simulation, the following results
were obtained: agglomerative methods of clustering have much
greater non-uniformity of cluster weights (the difference is
up to two times). Other than on test-source data, the clusters
from one virtual node very rarely appeared, which is absolutely
inadmissible. Also, the computational complexity of agglom-
erative methods is too high. Nevertheless, the distance function
version distmin performs on average better than distmax.

Among the divisional algorithms, different methods of base
node extraction and node clustering were considered. Slightly
better results are given by methods of global search for the
most distant nodes in the graph global dijkstra and global bfs.
However, these methods require significant computational
cost. The fastest methods are those based on double BFS
(double bfs) traversal. For graph partitioning, you can also use
the fastest parallel width traversal of vertices (bfs or its version
with sorted bfs). The method based on these traversals works
for O(msk), gives basic quality and uniformity indices only
slightly inferior to global dijkstra and global bfs methods, and
works stably on different test data. Therefore, this method

TABLE I
AVERAGE CLUSTERING INDICES BY 30 DATA SETS, k = 4, m = 300, L = 25.

Clustering Method Sil ID IS Isq IW · 100%
AHC, d1, distmax 0.26 0.12 0.28 0.21 5.16%
AHC, dmax, distmax 0.25 0.10 0.24 0.21 5.16%
AHC, d1, distmin 0.40 0.24 0.49 0.36 5.87%
AHC, dmax, distmin 0.40 0.23 0.50 0.35 5.51%
DHC, dmax-double dijkstra-dijkstra 0.43 0.27 0.54 0.37 0.26%
DHC, d1-double dijkstra-dijkstra 0.43 0.27 0.54 0.37 0.28%
DHC, dmax-global dijkstra-dijkstra 0.44 0.32 0.56 0.39 0.17%
DHC, d1-global dijkstra-dijkstra 0.44 0.31 0.52 0.39 0.20%
DHC, dmax-global bfs-bfs 0.44 0.32 0.56 0.39 0.19%
DHC, d1-global bfs-bfs 0.44 0.32 0.56 0.39 0.19%
DHC, dmax-global bfs-sorted bfs 0.45 0.33 0.56 0.39 0.25%
DHC, d1-global bfs-sorted bfs 0.44 0.33 0.55 0.39 0.20%
DHC, dmax-double bfs-bfs 0.43 0.29 0.53 0.37 0.23%
DHC, d1-double bfs-bfs 0.43 0.29 0.53 0.37 0.23%
DHC, dmax-double bfs-sorted bfs 0.43 0.28 0.53 0.37 0.15%
DHC, d1-double bfs-sorted bfs 0.42 0.29 0.51 0.37 0.22%
DHC, dmax-double bfs-dijkstra 0.42 0.25 0.51 0.36 0.17%
DHC, d1-double bfs-dijkstra 0.43 0.27 0.52 0.37 0.17%
DHC, dmax-double bfs-prim 0.41 0.24 0.48 0.35 1.77%
DHC, d1-double bfs-prim 0.41 0.26 0.51 0.35 1.66%

can be the basis of the method for partitioning the blockDAG
Waterfall network into subnetworks.

In the future, the network layer needs to be augmented in
connection with to the partitioning into subnetworks. Also,
an important issue to study will be the robustness of the
obtained clustering methods and distance metrics to intentional
distortion by dishonest blockDAG participants.

REFERENCES

[1] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer,
“On Scaling Decentralized Blockchains,” in Financial Cryptography and
Data Security. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 106–125.

[2] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “SPECTRE: A Fast and
Scalable Cryptocurrency Protocol,” Cryptology ePrint Archive, Paper
2016/1159, 2016. [Online]. Available: https://eprint.iacr.org/2016/1159

[3] Y. Sompolinsky, S. Wyborski, and A. Zohar, “PHANTOM and
GHOSTDAG: A Scalable Generalization of Nakamoto Consensus,”
Cryptology ePrint Archive, Paper 2018/104, 2018. [Online]. Available:
https://eprint.iacr.org/2018/104

[4] A. M. Khalifa, A. M. Bahaa-Eldin, and M. A. Sobh, “Blockchain and its
Alternative Distributed Ledgers - A Survey,” in 2019 14th International
Conference on Computer Engineering and Systems (ICCES), 2019, pp.
118–125.

[5] K. Gai, Z. Hu, L. Zhu, R. Wang, and Z. Zhang, “Blockchain Meets DAG:
A BlockDAG Consensus Mechanism,” in Algorithms and Architectures
for Parallel Processing, M. Qiu, Ed. Cham: Springer International
Publishing, 2020, pp. 110–125.

[6] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “SoK: Diving into DAG-based
Blockchain Systems,” arXiv:2012.06128v2, pp. 1–36, 2020, https://arxiv.
org/abs/2012.06128.

[7] Q. Nguyen, A. Cronje, M. Kong, E. Lysenko, and A. Guzev, “Lachesis:
Scalable Asynchronous BFT on DAG Streams,” arXiv:2108.01900v1,
pp. 1–45, 2021, https://arxiv.org/abs/2108.01900.

[8] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A Secure Sharding Protocol For Open Blockchains,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 17–30. [Online].
Available: https://doi.org/10.1145/2976749.2978389

[9] A. E. Gencer, R. van Renesse, and E. G. Sirer, “Short Paper: Service-
Oriented Sharding for Blockchains,” in Financial Cryptography and
Data Security, A. Kiayias, Ed. Cham: Springer International Publishing,
2017, pp. 393–401.

[10] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018,
pp. 583–598.

[11] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
Blockchain via Full Sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: Association for Computing Machinery, 2018, pp.
931–948. [Online]. Available: https://doi.org/10.1145/3243734.3243853

[12] N. Durov. (2019) Telegram Open Network. [Online]. Available:
https://ton.org/ton.pdf

[13] C. Li and L.-J. Zhang, “A Blockchain Based New Secure Multi-Layer
Network Model for Internet of Things,” in 2017 IEEE International
Congress on Internet of Things (ICIOT), 2017, pp. 33–41.

[14] H. Bai, G. Xia, and S. Fu, “A Two-Layer-Consensus Based Blockchain
Architecture for IoT,” in 2019 IEEE 9th International Conference
on Electronics Information and Emergency Communication (ICEIEC),
2019, pp. 1–6.

[15] S. Grybniak, Y. Leonchyk, I. Mazurok, O. Nashyvan, and R. Shanin,
“Waterfall: Gozalandia. distributed protocol with fast finality and proven
safety and liveness,” 2022, 10 pages.

[16] S. Grybniak, D. Dmytryshyn, Y. Leonchyk, I. Mazurok, O. Nashyvan,
and R. Shanin, “Waterfall: A Scalable Distributed LedgerTechnology,”
2022, 6 pages.

[17] Ethereum 2.0. [Online]. Available: https://github.com/
ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md#
topics-and-messages

[18] Kaspa. Subnetworks. [Online]. Available: https://kaspa.gitbook.io/kaspa/
archive/archive/components/kaspad-full-node/reference/subnetworks-1

[19] L. Hubert, “Monotone invariant clustering procedures,” Psychometrika,
vol. 38, no. 1, pp. 47–62, 1973.

[20] M. Roux, “A comparative study of divisive and agglomerativehierarchi-
cal clustering algorithms,” Journal of Classification, vol. 35, pp. 345–
366, 2018.

[21] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, 1959.

[22] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[23] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and

https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2018/104
https://arxiv.org/abs/2012.06128
https://arxiv.org/abs/2012.06128
https://arxiv.org/abs/2108.01900
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/3243734.3243853
https://ton.org/ton.pdf
https://github.com/ethereum /consensus-specs/blob/dev/specs/phase0/p2p-interface.md#topics-and-messages
https://github.com/ethereum /consensus-specs/blob/dev/specs/phase0/p2p-interface.md#topics-and-messages
https://github.com/ethereum /consensus-specs/blob/dev/specs/phase0/p2p-interface.md#topics-and-messages
https://kaspa.gitbook.io/kaspa/archive/archive/components/kaspad-full-node/reference/subnetworks-1
https://kaspa.gitbook.io/kaspa/archive/archive/components/kaspad-full-node/reference/subnetworks-1

Applied Mathematics, vol. 20, pp. 53–65, 1987. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0377042787901257

https://www.sciencedirect.com/science/article/pii/0377042787901257

	Introduction
	Problem statement
	Requirements to partitioning into subnetworks

	Subnetting approaches
	Building a network topology
	Notations and preliminary remarks
	Information collection methods
	Topology of network of virtual nodes
	Clustering into roughly equal clusters
	Balancing block generation

	Hierarchical clustering
	Agglomerative hierarchical clustering (AHC)
	Divisive hierarchical clustering (DHC)

	Assessing the quality of clustering
	Silhouette
	Sphericity index
	Diameter index
	Standard deviation index
	Uniformity of cluster weights

	Modeling
	Conclusion
	References

